Math, asked by khawshia, 8 months ago

(ii) y-axis. Also, find the coordinates of the point of division in each case. ICBSE 20131
Prove that the points (4,5), (7,6), (6, 3), (3, 2) are the vertices of a parallelogram. Is it a retangular

Answers

Answered by ElijahAF
0

Answer:

Let

A(x1,y1) = (4,5)

B(x2,y2) = (7,6)

C(x3,y3) = (6, 3)

D(x4,y4) = (3, 2)

Distance of AB = √{(x2-x1)^2 + (y2-y1)^2}

                         = √{(7-4)^2 + (6-5)^2}

                         = √{(3)^2 + (1)^2}

                        = √{ 9 + 1}

                        = √10

Distance of BC = √{(x3-x2)^2 + (y3-y2)^2}

                         = √{(6-7)^2 + (3-6)^2}

                         = √{(-1)^2 + (-3)^2}

                         = √{1 + 9}

                         = √10

Distance of CD = √{(x4-x3)^2 + (y4-y3)^2}

                         = √{(3-6)^2 + (2-3)^2}

                         = √{(-3)^2 + (1)^2}

                        = √{9 + 1}

                        = √10

Distance of AD = √{(x1-x4)^2 + (y1-y4)^2}

                         = √{(4-3)^2 + (5-2)^2}

                         = √{(1)^2 + (3)^2}

                         = √{1 + 9}

                         = √10

Since AB=BC=CD=DA

Therefore, ABCD is a parallelogram

Diagonal AC = √{(x3-x1)^2 + (y3-y1)^2}

                     = √{(6-4)^2 + (3-5)^2}

                     = √{(2)^2 + (-2)^2}

                     = √{4 + 4}

                     = √8

Diagonal BD = √{(x4-x2)^2 + (y4-y2)^2}

                     = √{(3-7)^2 + (2-6)^2}

                     = √{(-4)^2 + (-4)^2}

                     = √{16 + 16}

                     = √32

Since AC ≠ BD

ABCD is not rectangular

Answered by simpleboy36
0
Idk the answer I’m so sry
Similar questions