Iif tan(A+B)+1 and cos(A-B)=/2, A>B then find A and B
Answers
Question:
If tan(A+B) = 1 and cos(A-B) = √3/2, A > B, then find A and B.
Answer:
A = 37.5°
B = 7.5°
Solution:
Given:
tan(A+B) = 1 --------(1)
cos(A-B) = √3/2 -------(2)
Considering eq-1 ,we have;
=> tan(A+B) = 1
=> tan(A+B) = tan45°
=> A+B = 45° -------(3)
Considering eq-2 ,we have;
=> cos(A-B) = √3/2
=> cos(A-B) = cos30°
=> A-B = 30° ----------(4)
Adding eq-3 and eq-4 , we get;
=> A+B+A-B = 45° + 30°
=> 2A = 75°
=> A = 75°/2
=> A = 37.5°
Now, putting A = 37.5° in eq-4 , we get;
=> A-B = 30°
=> 37.5° - B = 30°
=> B = 37.5° - 30°
=> B = 7.5°
Hence,
Required values of A and B are 37.5° and 7.5° respectively.
tan(A + B) = 1
Cos(A - B) = √3/2
_______________________
Value of A and B
_______________________
We know that,
So,
A + B = 45° .......(1)
_____________________
Now,
So,
A - B = 30° .......(2)
____________________
★ From equation 1.
A = 45° - B
★ Put Value of A in equation 2.
45° - B - B = 30°
45° - 2B = 30°
-2B = 30° - 45°
-2B = -15°
B = -15°/-2
B = 7.5°
____________________
★ Put Value of B in equation 1.
A + 7.5° = 45°
A = 45° - 7.5°
A = 37.5°
#answerwithquality
#BAL