IIf theta=30° prove that tan2theta=2tantheta/1-tan²theta
Answers
Answered by
0
Answer:
Step-by-step explanation:
tan 2 x 30 = 2 x tan 30 / 1 - tan ^2 30 (tan 60 = root 3) (tan 30 = 1/root3)
tan 60 = 2 x 1/root3 / 1 - 1/3
root3 = 2/root3 / 2/3
root3 = 3/root 3
root3 = root 3 (after rationalising)
MARK IT THE BRAINLIEST
Answered by
0
Answer:
TAN2(30)=2TAN30/1-TAN²30
LHS
2(1/√3)/(1-(1/√3)²)
2/√3/(1-1/3)
2/√3/2/3= 2/√3 * 3/2
3/√3
√3
RHS
TAN2(30)
TAN60
√3=LHS
PROVED
Step-by-step explanation:
Similar questions