Math, asked by mehtahappy276, 8 days ago

iii) cos^2 15° - cos^2 30° + cos^2 45° - cos^2 60° + cos^2 75° = 1/2

please help me solve this​

Attachments:

Answers

Answered by nithya12333
14

hope this may help you dear

Attachments:
Answered by hukam0685
3

Step-by-step explanation:

Given:

cos^2 15° - cos^2 30° + cos^2 45° - cos^2 60° + cos^2 75° = \frac{1}{2}\\

To find: Prove the expression.

Solution:

Formula used:

\bold{sin^2\theta+ cos^2\theta=1}\\\\\bold{cos(90°-\theta)=sin\theta}\\

We know the value of cos 30° ,cos 45° and cos 60°.

Step 1: Put the values of known angles

\implies  cos^2 15° - cos^2 30° + cos^2 45° - cos^2 60° + cos^2 75° \\  \\  \implies  cos^2 15° - \Big( { \frac{ \sqrt{3} }{2} }\Big)^{2}  + \Big( { \frac{ 1 }{ \sqrt{2} } }\Big)^{2}  -\Big( { \frac{1  }{2} }\Big)^{2}  + cos^2 75° \\  \\  \implies  cos^2 15° + cos^2 75° -  \frac{3}{4}  +  \frac{1}{2}  -  \frac{1}{4}  \\

Step 2: Apply complementary angle formula.

\implies  cos^2 (90 - 75°) + cos^2 75° -  \frac{3}{4}  +  \frac{1}{2}  -  \frac{1}{4} \\  \\ \implies  sin^275°+ cos^2 75° -  \frac{3}{4}  +  \frac{1}{2}  -  \frac{1}{4} \\  \\

Step 3: Apply identity

\implies  1 -  \frac{3}{4}  +  \frac{1}{2}  -  \frac{1}{4} \\

Step 4: Take LCM and solve

\implies   \frac{4 - 3 + 2 - 1 }{4}  \\  \\  \implies  \frac{2}{4}  \\  \\  \implies  \frac{1}{2}  \\  \\  = RHS \\  \\

Final answer:

\bold{cos^2 15° - cos^2 30° + cos^2 45° - cos^2 60° + cos^2 75° = \frac{1}{2}}\\

Hence proved.

Hope it helps you.

To learn more on brainly:

Find all the values of x, in between the range [0,2π] for the following equation.

2sin(3x)+3cos(3x)=0.

Don't spam for ...

https://brainly.in/question/43094799

Similar questions