Math, asked by shrutimahadik517, 6 months ago

(iii) Differentiate x.3X w.r.t. log(1 + 2x) step by step​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question : Differentiate wrt x log(1+2x)

\pink{\huge{\underline{\underline{❤Answer❤}}}}

 \:   \\ \implies \displaystyle \bf{log(1 + 2x).....given \: equation}

 \:  \:  \bullet  \underline{\bf{differentiating \: both \: sides \: with \: respect \: to \: x}}

 \:  \implies \displaystyle \sf{ \frac{dy}{dx}  =  log(1 + 2x)}

 \:  \:  \implies \displaystyle \sf{ \frac{dy}{dx}  =  \frac{1}{(1 + 2x)}  \times 2}

 \:  \:  \implies \displaystyle \sf{ \frac{dy}{dx}  =  \frac{2}{(1 + 2x)} }

 \:   \bigstar \boxed {\bf{answer \: will \: be \:  \frac{1}{1 + 2x} }}

 \:  \bullet \underline{ \bf{additional \: information}}

 \:  \star \bf{ \frac{dy}{dx} logx =  \frac{1}{x} }

 \:  \star \bf{ \frac{dy}{dx} log(1 + 2x) =  \frac{1}{1 + 2x}  \times  \frac{dy}{dx} (2x})

 \:  \\  \ =   \:  \bf{\frac{2}{1 + 2x} }...proved \: by \: using \: chain \: rule

Similar questions