Math, asked by samuu89, 11 months ago

(iii) If a and ß are the roots of the quadratic equation 3x2 + kr + 8.=0 and alpha:beta=2:3 , then find the k value.​

Answers

Answered by abhishekmaths
15

HEY MATE HERE'S THE ANSWER........ ❤️❤️❤️❤️❤️

GIVEN :

3x {}^{2}  + kx + 8 = 0 \\  \\  \alpha \:  \: and \:  \:  \beta  \:  \: are \:  \: its \:  \: root \:  \\  \\  \ \frac{ \alpha }{ \beta }  =  \frac{2}{3}

TO FIND : VALUE OF k

SOLUTION :

we \:  \: know \:  \:  \\ product \:  \: of \:  \: zeroes \:  =  \alpha  \beta  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ c}{a}  \\  \\ therefore \: ...... \\  \\  \alpha  \beta  =  \frac{ 8}{3} ...........eq {}^{1}  \\ also \\  \\   \frac{ \alpha }{ \beta }  =  \frac{2}{3} ..........(given) \\  \\ now \: multiply \: given \: and \: eq {}^{1}  \\  \\ you \: will \: get \:  \\  \alpha  {}^{2}  =  \frac{16}{9}  \\ taking \: square \: root \: both \: sides \\  \\  \alpha  =  +  \frac{4}{3} \:  \:  or \:  - \frac{4}{3}  \\  \\ \:  \: you \: will \: get \: two \: cases \: \\  \\  \\ case \: 1 \\  \\ when \:  \alpha  =  \frac{ - 4}{3}  \\  \\ you \: will \: get \:  \beta  =  - 2 \\  \\ case2 \\  \\ when \:  \alpha  =  +  \frac{4}{3}  \\ you \: will \: get \:  \beta  = 2 \\

Now,,

K can be both positive and negative.

using \:  \\ sum \: of \: zeroes \:  =  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ case \: 1 \\  \frac{-k}{3} \:  =   \frac{ - 4}{3}  + ( - 2) \\  =  >   \frac{ - 10}{3 }  \\  \\ therefore \: k =  10 \\  \\ similarly \:  \\ k =  - 10

Hence k can be +10 or - 10

===THANK YOU===

________HOPE IT HELPS ______

Answered by anuanku
4

Answer:

α/β = 2/3 --> ( i )

[ We use the "Co-efficient - Zeroes relation / also known as Viete's Relation ] --> 

--> α * β = 8/3 --> ( ii )

--> Multiplying ( i ) with ( ii ) --> 

 ---> α² = 16 / 9

  => α = ± ( 4/3 )

Correspondingly, β = ± 2

Further, we have the relation, α + β = -k / 3

         => ± [ 4/3 + 2 ] = -k / 3

         => ± [ 10 / 3 ] = - k / 3

         => k = - 10 or +10 

However, since, k > 0, k = 10 for α = -4/3 || β = -2 is considered the reqd.

Attachments:
Similar questions