(iii) If loge2 logn625 = log1016 loge 10, then the value of n will be:
(a) 16
(b) 10
(C) 5
(d) 4
Answers
Answered by
2
Answer:
Given,
log
e
2.log
x
625=log
10
16.log
e
10
or, log
e
2.log
x
5
4
=log
e
16 [ Using the law of logarithm]
or, (log
x
5
4
).log
e
2=log
e
2
4
or, (log
x
5
4
).log
e
2=4log
e
2
Comparing both sides we get,
log
x
5
4
=4
or, x
4
=5
4
or, x=5.
Similar questions