Math, asked by kapujeevan07, 3 months ago

iii) if the surface area of a sphere is 2826 cm2 then find its volume. (i = 3.14)
Sol​

Answers

Answered by Anonymous
18

Appropriate Question :

  • If the surface area of a sphere is 2826cm² then find its volume. (π = 3.14).

Solution :

Given that,

  • Surface area of a sphere is 2826cm².

And we need to find out the volume of sphere.

We know that,

  • Surface area of sphere = 4πr².
  • Volume of sphere = 4/3πr³.

So,

→ Surface area of sphere = 4πr²

→ 2826 = 4 * 3.14 * r²

→ 2826 = 12.56 * r²

→ 2826 = 12.56r²

→ r² = 2826/12.56

→ r² = 225

→ r = √225

r = 15.

Now,

→ Volume of sphere = 4/3πr³

→ Volume of sphere = 4/3 * 3.14 * (15)³

→ Volume of sphere = 4/3 * 3.14 * 3375

→ Volume of sphere = 4/3 * 10597.5

→ Volume of sphere = 4 * 3532.5

Volume of sphere = 14130. (Ans.)

Hence, the volume of sphere is 14130cm³.

Learn more :

1. if area of hemisphere is 28,000m2 find the diameter of hemisphere

brainly.in/question/31980774

2. ind the volume and surface area of the following cuboid. length=8cm ,breadth=7.5cm,height=12cm

brainly.in/question/31084181

Answered by Ridvisha
65

{ \underline{ \underline{ \huge{ \red{ \tt{QUESTION}}}}}}

If the surface area of a sphere is 2826 cm^2 . Then find its volume. ( π = 3.14 )

{ \underline{ \underline{ \huge{  \red{ \tt{SOLUTION}}}}}}

{ \dag{ \underline{ \underline{ \green{ \tt{ \:  \: given}}}}}} \\  \\ { \sf{ \blue{surface \: area \: of \: sphere = 2826 \:  {cm}^{2} }}}

{ \dag{ \underline { \underline{ \tt{ \green{ \:   \:  \: to \: find}}}}}} \\  \\ { \sf{volume \: of \: the \: sphere}}

{ \boxed{ \boxed{ \green{ \sf{surface  \: area \: of \: sphere = 4\pi {r}^{2} }}}}}

{ : { \implies{ \sf{ \blue{2826 \:  {cm}^{2}  = 4\pi {r}^{2} }}}}} \\ \\    \\ { : { \implies{ \sf { \blue{ {r}^{2}  =  \frac{2826 {cm}^{2} }{4 \times \pi}}}}}}  \\  \\  \\ {  : { \implies{ \sf  { \blue{r =  \sqrt{ \frac{2826 \:  {cm}^{2} }{4 \times \pi} } }}}}}

{ \boxed{ \boxed{ \sf{ \green{volume \: of \: sphere =  \frac{4}{3} \pi {r}^{3}}}}}}

{ : { \implies{ \sf{ \red{volume =  \frac{4}{3} \pi {( \sqrt{ \frac{2826}{4 \times \pi} }) }^{3} }}}}} \\   \\ \\ {  : { \implies{ \sf{ \red{volume =  \frac{4}{3} \pi  ({ \frac{53.16}{2 \times 1.77} }^{3}) }}}}}  \\  \\  \\ { : { \implies{ \sf{ \red{volume =  \frac{4}{3}  \times 3.14 \times  \frac{53.16 \times 53.16 \times 53.16}{8 \times 1.77 \times 1.77 \times 1.77}}}}}}

{ : { \implies{ \sf { \red{volume =  \frac{4}{3}  \times 3.14 \times  \frac{150229}{44.36}}}}} }  \\  \\  \\ { : { \implies{ \sf{ \red{volume =  \frac{4}{3}  \times 3.14 \times 3386 \:  {cm}^{3} }}}}}

{ : { \implies{ \red{ \sf{volume =  \frac{42528}{3}  {cm}^{3} }}}}} \\  \\   \\ {  : { \implies{ \red{ \sf{ volume = 14176 \:  {cm}^{3}}}}}}

Similar questions