Math, asked by rehan9865, 9 days ago

(iii) In the fig, seg PQ || seg DE, A (A POF) = 20 units
PF = 2 DP, then find A (DPQE).​

Answers

Answered by kamalhajare543
13

Answer:

Question:-

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

In the fig, seg PQ || seg DE, A (A POF) = 20 units PF = 2 DP, then find A (DPQE).

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution:-

Given:-

 \sf \: A(\triangle PQF)= 20  \: Units , PF=20 \\  \sf \:  \: Let \: Assume \:  DP=x  \: \therefore PF=2x

   \qquad \bullet\sf \:  \:  \: In  \:  \: \angle FDE \sim \angle FPQ  \:   \:  \qquad \qquad \dots \: Corresponding \: Angle

   \qquad \bullet \: \sf  \:  \: \angle FED \sim \angle FQP \qquad \qquad \dots \: Corresponding Angle

 \sf \rightarrow \: \therefore \triangle FDE \sim \triangle FPQ

By AA test of Similarity

 \\ \qquad \: \:\sf \longrightarrow \frac{A\big(\triangle  FDE \big)}{A\big(\triangle FPQ\big)}=\frac{DF^2}{PF^2}= \frac{(3x)^2}{(2x)^2}= \frac{9}{4} \\

Figure is given in Attachment,

 \sf \: \longrightarrow A\big(\triangle FDE\big)=\frac{9}{4} \:  \:  A\big(\triangle FPQ\big)=\frac{9}{4} ×20 =45 \\

 \sf \: \longrightarrow A\big( \boxed{} DPQE =A\big(\triangle FDC\big)= \: A\big(\triangle FPQ\big)\:

So,

\longrightarrow  \qquad45-20

\longrightarrow \qquad  \underline{ \boxed{ \purple{ \sf \:   \: 25 \:  Units \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Answered by parmeshwardaheria
3

Answer:

this is the answer please make me brainlist please like , follow please

Attachments:
Similar questions