iii. कविता का शीर्षक दीजिए।
Please reply this question
Answers
Answer:
†
Given:−
The length of a rectangle is 5 metres less than twice the breadth. Perimeter of the rectangle is 50 m.
\Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}} †
ToFind:−
Length and Breadth of the rectangle
\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}} †
Solution:−
First,
Let
Breadth be b
Length be l
According to the question,
Breadth = b
Length is 5 meters less than twice the breadth.
This implies that,
Length = 2b - 5
And
Perimeter of the rectangle is 50 m.
We know that,
\boxed{\pink{\sf Perimeter \: of \: rectangle \: = \: 2 \: (l \: + \: b)}}
Perimeterofrectangle=2(l+b)
Here,
l = 2b - 5
b = b
Perimeter of Rectangle = 50
Substituting the values,
\sf 50 \: = \: 2 \: (2b \: - \: 5 \: + \: b) 50=2(2b−5+b)
\sf 50 \: = \: 2 \: (3b \: - \: 5) 50=2(3b−5)
\sf 50\: = \: 6b \: - \: 10 50=6b−10
\sf 50 \: + \: 10 \: = \: 6b 50+10=6b
\sf 60 \: = \: 6b 60=6b
\sf b \: = \: \dfrac{60}{6} b=
6
60
\sf b \: = \: \cancel{\dfrac{60}{6}} b=
6
60
b = 10 m
Then,
l = 2b - 5
Substituting the value,
l = 2 * 10 - 5
l = 20 - 5
l = 15 m
Therefore,
\bullet{\leadsto} \: \underline{\boxed{\purple{\texttt{Length and Breadth of the rectangle = 15m and 10m.}}}} ∙⇝
Length and Breadth of the rectangle = 15m and 10m.
\Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}} †
FormulasUsed:−
\sf Perimeter \: of \: rectangle \: = \: 2 \: (l \: + \: b) Perimeterofrectangle=2(l+b)
where,
l is length of the rectangle
b is the breadth of the rectangle
Answer:
कविता का शीर्षक ' ध्वनि' पूर्णतया सार्थक है l
Explanation:
HOPE ITS HELPFUL., ❣️