Hindi, asked by rahulgogna6, 2 months ago

iii. कविता का शीर्षक दीजिए।
Please reply this question ​

Answers

Answered by llitzyourbfll
2

Answer:

Given:−

The length of a rectangle is 5 metres less than twice the breadth. Perimeter of the rectangle is 50 m.

\Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}} †

ToFind:−

Length and Breadth of the rectangle

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}} †

Solution:−

First,

Let

Breadth be b

Length be l

According to the question,

Breadth = b

Length is 5 meters less than twice the breadth.

This implies that,

Length = 2b - 5

And

Perimeter of the rectangle is 50 m.

We know that,

\boxed{\pink{\sf Perimeter \: of \: rectangle \: = \: 2 \: (l \: + \: b)}}

Perimeterofrectangle=2(l+b)

Here,

l = 2b - 5

b = b

Perimeter of Rectangle = 50

Substituting the values,

\sf 50 \: = \: 2 \: (2b \: - \: 5 \: + \: b) 50=2(2b−5+b)

\sf 50 \: = \: 2 \: (3b \: - \: 5) 50=2(3b−5)

\sf 50\: = \: 6b \: - \: 10 50=6b−10

\sf 50 \: + \: 10 \: = \: 6b 50+10=6b

\sf 60 \: = \: 6b 60=6b

\sf b \: = \: \dfrac{60}{6} b=

6

60

\sf b \: = \: \cancel{\dfrac{60}{6}} b=

6

60

b = 10 m

Then,

l = 2b - 5

Substituting the value,

l = 2 * 10 - 5

l = 20 - 5

l = 15 m

Therefore,

\bullet{\leadsto} \: \underline{\boxed{\purple{\texttt{Length and Breadth of the rectangle = 15m and 10m.}}}} ∙⇝

Length and Breadth of the rectangle = 15m and 10m.

\Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}} †

FormulasUsed:−

\sf Perimeter \: of \: rectangle \: = \: 2 \: (l \: + \: b) Perimeterofrectangle=2(l+b)

where,

l is length of the rectangle

b is the breadth of the rectangle

Answered by Anonymous
2

Answer:

कविता का शीर्षक ' ध्वनि' पूर्णतया सार्थक है l

Explanation:

HOPE ITS HELPFUL., ❣️

Similar questions