Math, asked by saraswatisalunke1956, 1 month ago

(iii) Ritu gets 760 simple interest on a sum of money for 2
years at 5% per annum, how much compound interest she
will get on the same rate for the same time?

Answers

Answered by TwilightShine
5

Answer :-

  • The compound interest is Rs 779.

To find :-

  • The compound interest.

Solution :-

  • Before finding the compound interest, we have to find the principal using the simple interest, rate and time.

We know that :-

  \underline{ \boxed{\sf SI =  \dfrac{Principal \times Rate \times Time}{100}}}

Where,

  • SI = Simple Interest.

Here,

  • Simple interest = Rs 760.
  • Rate = 5% per annum.
  • Time = 2 years.

  • Let the principal be "p".

Substituting the given values in this formula,

 \longmapsto \tt760 =  \dfrac{p \times 5 \times 2}{100}

 \longmapsto\tt760 =  \dfrac{p \times 10}{100}

 \longmapsto\tt760 =  \dfrac{10p}{100}

\longmapsto \tt760 \times 100 = 10p

 \longmapsto\tt76000 = 10p

  \longmapsto\tt\dfrac{76000}{10}  = p

 \longmapsto\overline{ \boxed{ \tt Rs \: 7600 = p}}

------------------------------------

  • Now, as we know the principal, let's find the compound interest! For that, let's first find the amount.

We know that :-

  \underline{ \boxed{\sf Amount = Principal \left(1 + \dfrac{Rate}{100}\right)^{Time}}}

Here,

  • Principal = Rs 7600.
  • Rate = 5% per annum.
  • Time = 2 years.

Therefore,

\longmapsto\rm Amount = 7600 \left(1 +  \dfrac{5}{100}  \right)^{2}

 \longmapsto\rm Amount = 7600 \left(1 +  \dfrac{1}{20} \right)^{2}

 \longmapsto\rm Amount = 7600 \left( \dfrac{1 \times 20 + 1 \times 1}{20}  \right)^{2}

 \longmapsto\rm Amount =  7600\left( \dfrac{20 + 1}{20}  \right)^{2}

 \longmapsto \rm Amount =  7600\left(\dfrac{21}{20}  \right)^{2}

 \longmapsto\rm Amount = 7600 \times  \dfrac{21}{20}  \times  \dfrac{21}{20}

 \longmapsto\rm Amount = 7600 \times  \dfrac{441}{400}

 \longmapsto\rm Amount = 76 \!\!\!\not0 \!\!\!\not0 \times  \dfrac{441}{4 \!\!\!\not0 \!\!\!\not0}

 \longmapsto\rm Amount = 76 \times  \dfrac{441}{4}

 \longmapsto\rm Amount =  \dfrac{33516}{4}

 \longmapsto\overline{ \boxed{ \rm Amount = Rs \: 8379}}

------------------------------------

  • Finally, let's find the compound interest!

We know that :-

  \underline{ \boxed{\sf CI = Amount - Principal}}

Where,

  • CI = Compound Interest.

Here,

  • Amount = Rs 8379.
  • Principal = Rs 7600.

Hence,

 \boxed{ \bf CI = 8379 - 7600}

  \boxed{\bf CI = Rs \: 779}

________________________________

  • Hence, the compound interest Ritu will get on the same rate for the same time is Rs 779.
Similar questions