Math, asked by sweetycute111, 4 months ago

(iii) Solve the quadratic equation x(x - 1) = 1.​

Answers

Answered by anindyaadhikari13
7

Required Answer:-

Given:

  • x(x - 1) = 1

To find:

  • The value of x.

Solution:

Given,

 \rm x(x - 1) = 1

 \rm \implies {x}^{2}  - x = 1

 \rm \implies {x}^{2}  - x -  1 = 0

Now, it is in the standard form.

Here,

 \rm a = 1

 \rm b = -  1

 \rm c = -  1

Therefore,

 \rm x_{1,2} =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

 \rm =  \dfrac{1 \pm \sqrt{ {( - 1)}^{2} - 4 \times1 \times ( - 1)}}{2 \times 1}

 \rm =  \dfrac{1 \pm \sqrt{1 + 4}}{2 \times 1}

 \rm =  \dfrac{1 \pm \sqrt{5}}{2}

Hence,

 \rm x_{1} =  \dfrac{1 +  \sqrt{5} }{2}

 \rm x_{2} =  \dfrac{1 - \sqrt{5} }{2}

So, the roots of the equation are (1 - √5)/2 and (1 + √5)/2

Answer:

  • The roots of the equation are (1 + √5)/2 and (1 - √5)/2
Answered by BrainlyKingdom
1

\sf{x\left(x-1\right)=1}

\implies\sf{x^2-x-1=1-1}

\implies\sf{x^2-x-1=0}

\bf{Quadratic\:Equation\:Formula:}

\tt{For\:a\:quadratic\:equation\:of\:the\:form\:}\:ax^2+bx+c=0\tt{\:the\:solutions\:are\:}

\tt{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

In our case, we have :

\sf{a=1,\:b=-1,\:c=-1}

\sf{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4\cdot \:1\cdot \left(-1\right)}}{2\cdot \:1}}

\implies\sf{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{5}}{2\cdot \:1}}

\implies\sf{\displaystyle x_1=\frac{-\left(-1\right)+\sqrt{5}}{2\cdot \:1},\:x_2=\frac{-\left(-1\right)-\sqrt{5}}{2\cdot \:1}}

\implies\bf{\displaystyle x=\frac{1+\sqrt{5}}{2},\:x=\frac{1-\sqrt{5}}{2}}

Similar questions