Math, asked by manasibhoite06, 4 months ago

(iii) The dimensions of a metallic cuboid are 44 cm x 42 cm x 21 cm. It is melted and
recast into a sphere. Find the surface area of the sphere.​


dimplevarshney76: abs
dimplevarshney76: hyy

Answers

Answered by Sauron
59

Answer:

The surface area of the sphere is 5544 cm².

Step-by-step explanation:

Solution :

Dimensions = 44 cm × 42 cm × 21 cm

Melted into = Sphere

Here,

Volume of the cuboid = Volume of the sphere

\bigstar \: \boxed{\sf{Volume \: of \: cuboid = l \times b \times h}}

  • l = 44 cm
  • b = 42 cm
  • h = 21 cm

\sf{\longrightarrow} \: 44 \times 42 \times  21

\sf{\longrightarrow} \: 1848  \times 21

\sf{\longrightarrow} \: 38808 \:  {cm}^{3}

Volume of the cuboid = 38808 cm³.

____________________________

\bigstar \: \boxed{\sf{Volume \: of \: sphere=  \frac{4}{3}\pi{r}^{3}}}

\sf{\longrightarrow} \:  \dfrac{4}{3} \times  \dfrac{22}{7} \times  {(r)}^{3}  = 38808

\sf{\longrightarrow} \:  \dfrac{88}{21}\times  {(r)}^{3}  = 38808

\sf{\longrightarrow} \:  88r^{3} = 38808 \times 21

\sf{\longrightarrow} \:  88r^{3} = 814968

\sf{\longrightarrow} \:  r^{3} = {\dfrac{814968}{88}}

\sf{\longrightarrow} \:  r^{3} = 9261

\sf{\longrightarrow} \:  r =  \sqrt[3]{9261}

\sf{\longrightarrow} \:  r = 21

Radius of the sphere = 21 cm

____________________________

\bigstar \: \boxed{\sf{Surface \: area \:  of \: sphere =4\pi{r}^{2}}}

\sf{\longrightarrow} \: 4 \times  \dfrac{22}{7} \times {(21)}^{2}

\sf{\longrightarrow} \: 4 \times  \dfrac{22}{7} \times 21 \times 21

\sf{\longrightarrow} \: 4 \times  22\times 21 \times 3

\sf{\longrightarrow} \:88\times63

\sf{\longrightarrow}  \: 5544 \:  {cm}^{2}

Therefore, the surface area of the sphere is 5544 cm².


contentbot15: hi
contentbot15: ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
wtfhrshu: ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
rohitrawat730550: bro how you write it in this form which app u use plss tell dude
Anonymous: Kindly don't comment unnecessarily
Anonymous: Gr8
Answered by Anonymous
7

 \star~\boxed{ \sf{  Volume~ of~ cuboid = Volume~ of ~sphere}}

 \circ~ \sf  lbh = \dfrac{ 4}{3 } πr³

_______________________________________

 ~~ \sf   \dfrac{ 4}{3 }πr³ = 44×42×21

 ~~ \sf  r³=44 \times 42 \times 21 \times  \dfrac{3}{4}  \times  \dfrac{7}{22}

 ~~ \sf  r³=21 \times 21 \times 21

~~  \sf  r=  \sqrt[3]{21 \times 21 \times 21}

~~ \star ~\sf \underline{\underline{  r = 21 \: cm}}

_______________________________________

 \circ~ \sf  Surface \:  area \:  of  \: sphere = 4πr²

  \sf  SA=4 \times  \dfrac{22}{7}  \times (21)²

  \sf  SA=4 \times 22  \times 3×21

 \star~ \sf \underline {\underline{SA=5544 \:  {cm}^{2}}}

_______________________________________

Similar questions