IIT JEE ADVANCE
If the two lines represented by
x²(tan²¢+cos²¢) - 2xytan¢ +y²sin²¢ = 0 make angle α,β with x axis then
(a) tanα+ tanβ = 4cosec2¢
(b) tanα tanβ= sec²¢ + tan²¢
(c) tanα -tanβ = 2
(d) tanα/tan β= 2+sin2¢ /2-sin2¢
Answers
Answered by
7
Answer:- (a,c,d)
Explanation:-
- Let the lines represented by the given Equation y = xtanα and y = xtanβ
given Equation ,x²(tan²¢ +cos²¢) -2xytan¢ + y²sin²¢ = 0
Dividing by sin²¢
we get ,
∴ tanα + tanβ = 2tanθ/sin²θ
= 2tanθ/sin²θ => 2/sinθcosθ = 4cosec2θ ___(1)
∵ 2sinθcosθ = sin2θ
option (A) correct
______________________________
tanα tanβ = tan²θ + cos²θ /sin²θ
= sec²θ +cot²θ -----(2)
___________________________
now consider
(tanα - tanβ ) ² = (tanα + tanβ)² - 4tanα tan β
= 4/sin²¢ + cos² θ -4(sec²¢ +cot ²θ)using (1) and (2) equation
=4 [1-sin²¢ +cos⁴¢ / sin²¢cos²¢]
= 4[cos²¢ - cos⁴¢ / sin²¢ cos²¢
= 4 [ cos²¢ (1-cos²¢ )/sin²¢ cos²¢]
= 4[cos²¢ sin²¢ /cos²¢ sin²¢ ]
= 4
=> tanα - tanβ = +-2 ____(3)
Let us consider
tanα - tanβ = 2 _____(4)
Option (c) is correct
__________________________
then, on solving equation (1) and(4)
we get ' 2tanα = 4cosec2θ +2
and 2tanβ = 4cosec2θ -2;
then ' tanα /tanβ = 4cosec2θ +2/4cosec2θ -2
= 2+sin2θ/2-sin2θ
Option (D) is correct
_____________________________
Similar questions