Physics, asked by desac24854, 1 month ago

[IIT- JEE (Advanced) - 2014]

A galvanometer gives full scale deflection with 0.006 A current. By connecting it to a 4990 Ω resistance, it can be converted into a voltmeter of range 0 − 30 V. If connected to a 2n/249 Ω resistance, it becomes an ammeter of range 0 − 1.5 A. The value of n is ?


Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
57

Answer:-

\pink{\bigstar} The value of n is \large\leadsto\boxed{\tt\purple{5}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • I = 1.5 A

  • Ig = 0.006 A

  • R = 4990 Ω

  • V = 30 V

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Figure:-

\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\put(1,5.1){\line(1,0){2.5}}\qbezier(4.5,5.1)(4.5,5.1)(5.5,5.1)\qbezier(5.5,5.1)(5.5,5.1)(5.7,5.4)\qbezier(5.7,5.4)(5.7,5.4)(5.9,4.8)\qbezier(5.9,4.8)(5.9,4.8)(6.1,5.4)\qbezier(6.1,5.4)(6.1,5.4)(6.3,4.8)\qbezier(6.3,4.8)(6.3,4.8)(6.5,5.4)\qbezier(6.5,5.4)(6.5,5.4)(6.7,4.8)\qbezier(6.7,4.8)(6.7,4.8)(6.8,5.1)\qbezier(6.8,5.1)(6.8,5.1)(10,5.1)\put(4,5.1){\circle{1}}\put(3.8,5.0){\bf G}\put(5.5,4.3){\bf $r = 10 \: \Omega$}\put(5.5,1.3){\bf $\dfrac{2n}{249} \: \Omega$}\put(10,5.1){\line(0,-1){3}}\put(1,5.1){\line(0,-1){3}}\qbezier(1,2.1)(1,2.1)(4.5,2.1)\qbezier(4.5,2.1)(4.5,2.1)(5.5,2.1)\qbezier(5.5,2.1)(5.5,2.1)(5.7,2.4)\qbezier(5.7,2.4)(5.7,2.4)(5.9,2.0)\qbezier(5.9,2.0)(5.9,2.0)(6.1,2.4)\qbezier(6.1,2.4)(6.1,2.4)(6.3,2.0)\qbezier(6.3,2.0)(6.3,2.0)(6.5,2.4)\qbezier(6.5,2.4)(6.5,2.4)(6.7,2.0)\qbezier(6.7,2.0)(6.7,2.0)(6.8,2.1)\qbezier(6.8,2.1)(6.8,2.1)(10,2.1)\put(1,5.1){\vector(1,0){1.5}}\put(2.1,4.4){\bf $I_{g}$}\end{picture}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

✯ Let the initial resistance of galvanometer be 'r'.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

When galvanometer is converted into Voltmeter:-

We know, a galvanometer can be converted into Voltmeter by connecting a large resistance across it in series.

Hence, we add the given Resistance R in series with Galvanometer.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Refer to the Figure:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now,

\pink{\bigstar} \large\underline{\boxed{\bf\green{V = I_g(r+R)}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 30 = 0.006 (r + 4990)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf r = \dfrac{30}{0.006} - 4990

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf r = \dfrac{30 - 4990 \times 0.006}{0.006}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf r = \dfrac{30 - 29.94}{0.006}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf r = \dfrac{0.06}{0.006}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\underline{\bf\red{r = 10 \: \Omega}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the resistance of galvanometer 'r' is 10 Ω.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

When Galvanometer is converted into Ammeter:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Refer to the Figure:-

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\bigstar} \large\underline{\boxed{\bf\green{I_g \times r = (I - I_g) \times r}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 0.006 \times 10 = (1.5 -  0.006) \times \dfrac{2n}{249}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 0.06 = 1.494 \times \dfrac{2n}{249}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 0.06 = \dfrac{2.988}{249}  \times n

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf n = \dfrac{0.06 \times 249}{2.988}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf n = \dfrac{14.94}{2.988}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\underline{\underline{\bf\red{n = 5}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, the value of n is 5.

Note:- Reference of the exact figure in attachment.

Attachments:
Answered by Anonymous
67

Answer:

Given :-

  • A galvanometer gives full scale deflection with 0.006 A current.
  • By connecting it to a 4990 Ω resistance, it can be converted into a voltmeter of range 0 - 30 V.
  • If connected to a 2N/249 Ω resistance, it becomes an ammeter of range 0 - 15 A.

To Find :-

  • What is the value of n.

Formula Used :-

 \longmapsto \sf\boxed{\bold{\pink{V = I_g(r + R)}}}\\

 \longmapsto \sf\boxed{\bold{\pink{{I_g}r =\: (I - I_g)r}}}\\

Solution :-

First, we have to find the resistance of a galvanometer :

Given :

  • R = 4990 Ω
  • V = 30 V
  • Ig = 0.006 A
  • I = 1.5 A

According to the question by using the formula we get,

 \implies \sf 30 =\: 0.006(r + 4990)

 \implies \sf 30 =\: \dfrac{6}{1000}(r + 4990)

 \implies \sf \dfrac{30 \times 1000}{6} =\: r + 4990

 \implies \sf \dfrac{\cancel{30000}}{\cancel{6}} =\: r + 4990

 \implies \sf \dfrac{5000}{1} =\: r + 4990

 \implies \sf 5000 =\: r + 4990

 \implies \sf 5000 - 4990 =\: r

 \implies \sf 10 =\: r

 \implies \sf\bold{\purple{r =\: 10\: \Omega}}

Hence, the resistance of a galvanometer is 10 Ω .

Now, we have to find the value of n :

Given :

  • Ig = 0.006 A
  • r = 10 Ω
  • I = 1.5 A
  • r = 2n/249 Ω

According to the question by using the formula we get,

 \implies \sf 0.006 \times 10 =\: (1.5 - 0.006) \times \dfrac{2n}{249}

 \implies \sf \dfrac{6}{1000} \times 10 =\: \bigg(\dfrac{15}{10} - \dfrac{6}{1000}\bigg) \times \dfrac{2n}{249}

 \implies \sf \dfrac{60}{1000} =\: \bigg(\dfrac{1500 - 6}{1000}\bigg) \times \dfrac{2n}{249}

 \implies \sf \dfrac{6\cancel{0}}{100\cancel{0}} =\: \dfrac{1494}{1000} \times \dfrac{2n}{249}

 \implies \sf \dfrac{6}{100} =\: \dfrac{1494}{1000} \times \dfrac{2n}{249}

 \implies \sf \dfrac{6}{100} =\: \dfrac{2988n}{249000}

By doing cross multiplication we get,

 \implies \sf 298800n =\: 249000 \times 6

 \implies \sf 298800n =\: 1494000

 \implies \sf n =\: \dfrac{14940\cancel{00}}{2988\cancel{00}}

 \implies \sf n =\: \dfrac{\cancel{14940}}{\cancel{2988}}

 \implies \sf\bold{\red{n =\: 5}}

\therefore The value of n is 5 .

Similar questions