IIT JEE question
find the value of
cos³(π/8) cos( 3π/8)
+ sin ³(π/8) sin ( 3π/8)
Answers
forumlas used ;
cos (π/2- X) = cos X
Sin (π/2- X) = sinx
sinx²+ cos x²= 1
and 2 sin A sin B = sin (A+B) + sin ( A-B)
❇️step by step explanation
cos³(π/8) cos( 3π/8)
+ sin ³(π/8) sin ( 3π/8)
= cos ³(π/8) cos (π/2 - π/8) +
sin³(π /8) sin (π/2- π/8)
= cos³(π/8) sin ( π/8)
+ sin ³(π/8) cos ( π/8)
= sin (π /8) cos (π /8) [ sin²(π/8) + cos²( π/8) ]
{ since sin x² + cos x²= 1 }
then ,
= sin (π/8) cos (π/8)
multiply and divide by 2
=
now use formula
[ 2 sin A sin B = sin (A+B) + sin ( A-B)]
then , we get
=
• so the value of
cos³(π/8) cos( 3π/8)
+ sin ³(π/8) sin ( 3π/8) = 1/(2√ 2)
I hope it helps you
❇️follow me
cos³(π/8) cos( 3π/8)
+ sin ³(π/8) sin ( 3π/8)
= cos ³(π/8) cos (π/2 - π/8) +
sin³(π /8) sin (π/2- π/8)
= cos³(π/8) sin ( π/8)
+ sin ³(π/8) cos ( π/8)
= sin (π /8) cos (π /8) [ sin²(π/8) + cos²( π/8) ]
{ since sin x² + cos x²= 1 }
then ,
= sin (π/8) cos (π/8)
multiply and divide by 2
=
now use formula
[ 2 sin A sin B = sin (A+B) + sin ( A-B)]
then , we get
=
=
=