Illustrate the shift in supply curve with the help of diagram
Answers
Answer:
★ Concept :-
Here the concept of Total Angle of Quadrilateral and Linear Pair of angles has been used. Firstly we can find the fourth angle of trapezium. Then we can apply Linear Pair of Angles to find the required angles using Angle Sum Property of Triangle.
Let's do it !!
___________________________________________
★ Formula Used :-
\begin{gathered}\\\;\boxed{\sf{\pink{Sum\;of\;all\;Angles\;of\;Quadrilateral\;=\;\bf{360^{\circ}}}}}\end{gathered}SumofallAnglesofQuadrilateral=360∘
\begin{gathered}\\\;\boxed{\sf{\pink{Sum\;of\;all\;angles\;on\;line\;=\;\bf{180^{\circ}}}}}\end{gathered}Sumofallanglesonline=180∘
\begin{gathered}\\\;\boxed{\sf{\pink{Sum\;of\;all\;angles\;of\;Triangle\;=\;\bf{180^{\circ}}}}}\end{gathered}SumofallanglesofTriangle=180∘
___________________________________________
★ Solution :-
Given,
» First angle of Trapezium = 80°
» Second angle of Trapezium = 52°
» Third angles of Trapezium = 143°
Let fourth angle of Trapezium be A°
We know that,
\begin{gathered}\\\;\sf{\rightarrow\;\;Sum\;of\;all\;Angles\;of\;Quadrilateral\;=\;\bf{360^{\circ}}}\end{gathered}→SumofallAnglesofQuadrilateral=360∘
By applying values, we get
\begin{gathered}\\\;\sf{\rightarrow\;\;80^{\circ}\;+\;52^{\circ}\;+\;143^{\circ}\;+\;A^{\circ}\;=\;\bf{360^{\circ}}}\end{gathered}→80∘+52∘+143∘+A∘=360∘
\begin{gathered}\\\;\sf{\rightarrow\;\;275^{\circ}\;+\;A^{\circ}\;=\;\bf{360^{\circ}}}\end{gathered}→275∘+A∘=360∘
\begin{gathered}\\\;\sf{\rightarrow\;\;A^{\circ}\;=\;\bf{360^{\circ}\;-\;275^{\circ}}}\end{gathered}→A∘=360∘−275∘
\begin{gathered}\\\;\bf{\rightarrow\;\;A^{\circ}\;=\;\bf{\green{85^{\circ}}}}\end{gathered}→A∘=85∘
Hence, Fourth Angle of Trapezium = 85°
___________________________________________
~ For value of x ::
We know that Fourth angle of Trapeziumand angle y are Linear Pair of Angles. So, applying the formula, we get
\begin{gathered}\\\;\sf{\Longrightarrow\;\;Sum\;of\;all\;angles\;on\;line\;=\;\bf{180^{\circ}}}\end{gathered}⟹Sumofallanglesonline=180∘
By applying values, we get
\begin{gathered}\\\;\sf{\Longrightarrow\;\;85^{\circ}\;+\;y\;=\;\bf{180^{\circ}}}\end{gathered}⟹85∘+y=180∘
\begin{gathered}\\\;\sf{\Longrightarrow\;\;y\;=\;\bf{180^{\circ}\;-\;85^{\circ}}}\end{gathered}⟹y=180∘−85∘
\begin{gathered}\\\;\bf{\Longrightarrow\;\;y\;=\;\bf{\blue{95^{\circ}}}}\end{gathered}⟹y=95∘
\begin{gathered}\\\;\underline{\boxed{\tt{Hence,\;\:\angle\:y\;=\;\bf{\purple{95^{\circ}}}}}}\end{gathered}Hence,∠y=95∘
___________________________________________
~ For the value of z ::
We see that the Third Angle ofTrapezium and angle z are in linear pair with each other. So applying the formula, we get
\begin{gathered}\\\;\sf{\Longrightarrow\;\;Sum\;of\;all\;angles\;on\;line\;=\;\bf{180^{\circ}}}\end{gathered}⟹Sumofallanglesonline=180∘
By applying values, we get
\begin{gathered}\\\;\sf{\Longrightarrow\;\;143^{\circ}\;+\;\angle\:z\;=\;\bf{180^{\circ}}}\end{gathered}⟹143∘+∠z=18
Illustrate the shift in supply curve with the help of diagram kura