Math, asked by sonalbolke04, 2 months ago

Illustration 3 :
Simple interest on a certain sum for 4 years at 7% p.a. is more than simple
interest on the same sum for 2.5 years at the same rate by 840. Find the
principal amount.​

Answers

Answered by TheBrainliestUser
53

Answer:

  • The principal amount is Rs 8000.

Step-by-step explanation:

Given that:

  • Simple interest on a certain sum for 4 years at 7% p.a. is more than simple interest on the same sum for 2.5 years at the same rate by 840.

To Find:

  • The principal amount.

Let us assume:

  • The principal amount be P.

Formula used:

  • S.I. = (P × R × T)/100

Where,

  • S.I. = Simple interest
  • P = Principal amount
  • R = Rate of interest
  • T = Time

Finding the principal amount:

According to the question.

⟶ (P × 7 × 4)/100 = (P × 7 × 2.5)/100 + 840

⟶ 28P/100 = 17.5P/100 + 840

⟶ 0.28P = 0.175P + 840

⟶ 0.28P - 0.175P = 840

⟶ 0.105P = 840

⟶ P = 840/0.105

⟶ P = 8000

∴ Principal amount = Rs 8000

Answered by BrainlyRish
38

Given : Simple interest on a certain sum for 4 years at 7% p.a. is more than simple interest on the same sum for 2.5 years at the same rate by 840.

Exigency To Find : The Principal amount.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Principal amount be P .

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\maltese\:\:\bf \:Formula\:for\:Simple\:Interest\:\::\\

\qquad \dag\:\:\bigg\lgroup \sf{Simple \:Interest \:: \dfrac{P \times R \times T}{100}  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , P is the Principal, R is the Rate of Interest & T is the Time.

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\: According \:to\: the \:Question \::}}\\

⠀⠀⠀⠀⠀━━━ Simple interest on a certain sum for 4 years at 7% p.a. is more than simple interest on the same sum for 2.5 years at the same rate by 840.

\qquad:\implies \sf 1^{st} \: Simple \:Interest \: = \: 2^{nd} \: Simple \:Interest\:\:+ 840 \\

\qquad:\implies \sf \dfrac{ P \times 7 \:\times 4 }{100} = \dfrac{ P \times 7 \:\times 2.5 }{100} + 840 \\

\qquad:\implies \sf \dfrac{ P \times 28 }{100} = \dfrac{ P \times 17.5 }{100} + 840 \\

\qquad:\implies \sf \dfrac{  28P }{100} = \dfrac{  17.5P }{100} + 840 \\

\qquad:\implies \sf \cancel {\dfrac{  28P }{100}} = \dfrac{  17.5P }{100} + 840 \\

\qquad:\implies \sf 0.28 \:P = \dfrac{  17.5P }{100} + 840 \\

\qquad:\implies \sf 0.28 \:P = \cancel {\dfrac{  17.5P }{100}} + 840 \\

\qquad:\implies \sf 0.28 \:P = 0.175P + 840 \\

\qquad:\implies \sf 0.28 \:P- 0.175 P =  840 \\

\qquad:\implies \sf 0.105 P =  840 \\

\qquad:\implies \sf  P =  \dfrac{840}{0.015} \\

\qquad:\implies \sf  P =  \cancel {\dfrac{840}{0.015}} \\

\qquad:\implies \bf  P =  8000 \\

\qquad:\implies \frak{\underline{\purple{\:P = Rs.8000  }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Principal \:amount\:\:is\:\bf{Rs.8000}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions