Math, asked by abirak04, 10 months ago

Im so confused can someone help me please.

Attachments:

Answers

Answered by Anonymous
0

\bf\huge\blue{\underline{\underline{ Question : }}}

OAB is a sector of a circle OA = 7cm, OA = OB. Angle AOB IS 90. Calculate the shaded region.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • OAB is a sector.
  • ∠O = 90°(x) .
  • OA = OB = 7cm.

To find,

  • Area of shaded region.

Formula used :

\boxed{\tt{\red{ :  \implies  Area\:of\:shaded\:region= Area  \: of  \: sector - Area \:  of \:  triangle }}}

\boxed{\tt{\red{:\implies  Area\:of\:Sector= \cfrac{x}{360} \times \pi r^{2} }}}

\boxed{\tt{\red{:\implies  Area\:of\:triangle = \cfrac{1}{2} \times bh}}}

Let,

➡ Find out the area of sector.

\bf\:\implies \cfrac{90}{360} \times \cfrac{22}{7} \times 7 \times 7

\bf\:\implies \cfrac{ 11 \times 7}{2}

\bf\:\implies \cfrac{ 77}{2}

➡ Now, find out the area of triangle.

\bf\:\implies \cfrac{1}{2} \times 7 \times 7

\bf\:\implies \cfrac{49}{2}

Now,

Find out the area of shaded region.

\bf\:\implies Area\:of\:shaded\:region= \cfrac{77}{2} - \cfrac{49}{2}

\bf\:\implies Area\:of\:shaded\:region= \cfrac{77 - 49}{2}

\bf\:\implies Area\:of\:shaded\:region= \cfrac{77 - 49}{2}

\bf\:\implies Area\:of\:shaded\:region= \cfrac{28}{2}

\bf\:\implies Area\:of\:shaded\:region= 14

\underline{\boxed{\rm{\purple{\therefore Area\:of\:shaded\:region = 14\:cm^{2}.}}}}\:\orange{\bigstar}

______________________________________________________

Similar questions