Imagine a situation in which all the water on earth dries up. Write a paragraph describing its effect on the
other domains of the earth.
Answers
Answer:
Imagine a world where the oceans all dried up, leaving only dry land behind. NASA reveals a remarkable video showing what Earth would look like if the oceans drained.
The video below is a remake of the 2008 animation by Horace Mitchell from NASA. In 2008, Dr. Mitchell developed an animated video showing a scenario where three-fifths of Earth’s surface, which is currently under the ocean, was revealed.
The video was recently remade by Dr. James O’Donoghue, a planetary scientist with Japan Aerospace Exploration Agency and formerly with NASA. Dr. O’Donoghue recreated the video at a much higher resolution, slowed down the animation to better see what the Earth looks like during the first 10’s of meters of draining and added a tracker to show how much water had been drained.
.
Plzzz Follow me ...
.
Plzzzzz mark me Brainliest...
Answer:
Encyclopedia Britannica logo
ArticleMediaAdditional Info
Impact Of Human Activities On The Hydrosphere
The activities of modern society are having a severe impact on the hydrologic cycle. The dynamic steady state is being disturbed by the discharge of toxic chemicals, radioactive substances, and other industrial wastes and by the seepage of mineral fertilizers, herbicides, and pesticides into surface and subsurface aquatic systems. Inadvertent and deliberate discharge of petroleum, improper sewage disposal, and thermal pollution also are seriously affecting the quality of the hydrosphere.
The present discussion focuses on three major problems—eutrophication, acid rain, and the buildup of the so-called greenhouse gases. Each exemplifies human interference in the hydrologic cycle and its far-reaching effects.
Eutrophication
Historically, aquatic systems have been classified as oligotrophic or eutrophic. Oligotrophic waters are poorly fed by the nutrients nitrogen and phosphorus and have low concentrations of these constituents. There is thus low production of organic matter by photosynthesis (equation [6]) in such waters. By contrast, eutrophic waters are well supplied with nutrients and generally have high concentrations of nitrogen and phosphorus and, correspondingly, large concentrations of plankton owing to high biological productivity. The waters of such aquatic systems are usually murky, and lakes and coastal marine systems may be oxygen-depleted at depth. The process of eutrophication is defined as high biological productivity resulting from increased input of nutrients or organic matter into aquatic systems. For lakes, this increased biological productivity usually leads to decreased lake volume because of the accumulation of organic detritus. Natural eutrophication occurs as aquatic systems fill in with organic matter; it is distinct from cultural eutrophication, which is caused by human intervention. The latter is characteristic of aquatic systems that have been artificially enriched by excess nutrients and organic matter from sewage, agriculture, and industry. Naturally eutrophic lakes may produce 75–250 grams of carbon per square metre per year, whereas those lakes experiencing eutrophication because of human activities can support 75–750 grams per square metre per year. Commonly, culturally eutrophic aquatic systems may exhibit extremely low oxygen concentrations in bottom waters. This is particularly true of stratified systems, as, for instance, lakes during summer where concentrations of molecular oxygen may reach levels of less than about one milligram per litre—a threshold for various biological and chemical processes.
Aquatic systems may change from oligotrophic to eutrophic, or the rate of eutrophication of a natural eutrophic system may be accelerated by the addition of nutrients and organic matter due to human activities. The process of cultural eutrophication, however, can be reversed if the excess nutrient and organic matter supply is shut off.
Not only do freshwater aquatic systems undergo cultural eutrophication, but coastal marine systems also may be affected by this process. On a global scale, the input by rivers of organic matter to the oceans today is twice the input in prehuman times, and the flux of nitrogen, together with that of phosphorus, has more than doubled. This excess loading of carbon, nitrogen, and phosphorus is leading to cultural eutrophication of marine systems. In several polluted eastern U.S. estuaries (e.g., Chesapeake and Delaware bays) and in some estuaries of western Europe (e.g., the Scheldt of Belgium and the Netherlands), all of the dissolved silica brought into the estuarine waters by rivers is removed by phytoplankton growth (primarily diatoms) resulting from excess fluxes of nutrients and organic matter. In the North Sea there is now a deficiency of silica and an excess of nitrogen and phosphorus, which in turn has led to a decrease in diatom productivity and an increase in cyanobacteria productivity—a biotic change brought about by cultural eutrophication.
Explanation:
Hope it's helped you!!!