Math, asked by snehanath64, 9 months ago

imple 97 If y = sin' x, show that (1 – x2)
dy
dy
- X-
dx
=o.
dr2
We h​

Answers

Answered by samriddhiverma154
1

Answer:

1^2-x^2=(1+x)(1+x)

hope this helps

Answered by CottenCandy
58

❥CORRECT QUESTION

 \sf \large \: if \: y =  { \sin}^{ - 1}  \: show \: that \: (1 -  {x}^{2} ) \frac{ {d}^{2}y }{d {x}^{2} }   = 0

Solution ♡

 \sf we \: have \: y =  { \sin }^{ - 1} x \\  \\  \sf\frac{dy}{dx}   =  \frac{1}{ \sqrt{(1 -  {x}^{2} }) }  \\  \\  \sf \sqrt{(1 -  {x}^{2} )}  \frac{dy}{dx}  = 1  \\ \\  \sf  \frac{d}{dx} ( \sqrt{(1 -  {x}^{2} )} . \frac{dy}{dx} ) = 0 \\   \\ \sf \  \sqrt{(1 -  {x}^{2} )} .\frac{ {d}^{2}y }{dx}  +  \frac{dy}{dx} . \frac{d}{dx} ( \sqrt{1 -  {x}^{2} )}  = 0 \\ \\  \sf  \sqrt{(1 - {x}^{2}) } . \frac{ {d}^{2}y }{d {x}^{2} }  -  \frac{dy}{dx} . \frac{2x}{2 \sqrt{1 -  {x}^{2} } }  = 0 \\ \\   \sf (1 -  {x}^{2} ) \frac{ {d}^{2} y}{d {x}^{2} }  - x \frac{dy}{?dx}  = 0

Hope it's help you ✔️

Similar questions