Math, asked by pankajtandon9082, 1 year ago

Implicit functions derivative x^3+y^3=3axy

Answers

Answered by charliejaguars2002
2

Answer:

\Large\boxed{\frac{ay-x^2}{y^2-ax}}

Step-by-step explanation:

GIVEN:

\Large\boxed{\textnormal{LESSON: IMPLICIT DERIVATIVE}}

\Large\boxed{\textnormal{SUBJECT: MATH}}}

To solve this problem, first you have to use sum and difference rule by the numbers from left to right.

SOLUTIONS:

First, you have to treat by the y as y(x).

Use differentiate from both sides by using with the x.

\displaystyle \frac{D}{DX}\left(X^3+Y^3\right)=\frac{D}{DX}\left(3axy\right)

Used sum/difference rule formula.\Large\boxed{\textnormal{SUM AND DIFFERENCE RULE FORMULA}}}}}

\displaystyle (F\pmG)'=F\:'\pm G'

\displaystyle \frac{d}{dx}\left(x^3\right)+\frac{d}{dx}\left(y^3\right)

Solve.

\displaystyle \frac{D}{DX}\left(x^3\right)=3x^2

\displaystyle \frac{d}{dx}\left(y^3\right)=3y^2\frac{d}{dx}\left(y\right)

\displaystyle 3x^2+3y^2\frac{d}{dx}\left(y\right)

Rewrite the problem down.

\displaystyle \frac{D}{DX}\left(3axy\right)=3a\left(y+x\frac{D}{DX}\left(y\right)\right)

Make sure to take out of constant.

\displaystyle (A*F)'=A*F'

\Large\boxed{\textnormal{PRODUCT (MULTIPLY) RULES}}

\displaystyle \left(F* G\right)'=F\:'*G+F*G'

F=x

G=y

\displaystyle 3a\left(\frac{d}{dx}\left(x\right)y+\frac{d}{dx}\left(y\right)x\right)

\displaystyle \frac{D}{DX}\left(X\right)=1

\displaystyle 3a\left(1* \:y+\frac{d}{dx}\left(y\right)x\right)

You have to write convenience of d/dx (y)=y'.

\displaystyle 3x^2+3y^2y^{'\:}=3a\left(y+xy^{'\:}\right)

Isolate by the y from one side of the equation.

Expand by using with distributive property.

\Large\boxed{\textnormal{DISTRIBUTIVE PROPERTY}}}

\displaystyle A(B+C)=AB+AC

3a(y+xy')

A=3a

B=Y

C=XY

\displaystyle 3ay+3axy^{'\:}

Rewrite the whole problem down.

\displaystyle 3x^2+3y^2y^{'\:}=3ay+3axy^{'\:}

Then, you subtract by 3x² from both sides.

\displaystyle 3x^2+3y^2y^{'\:}-3x^2=3ay+3axy^{'\:}-3x^2

Solve.

\displaystyle 3y^2y^{'\:}=3ay+3axy^{'\:}-3x^2

Subtract by 3axy' from both sides.

\displaystyle 3y^2y^{'\:}-3axy^{'\:}=3ay+3axy^{'\:}-3x^2-3axy^{'\:}

Solve.

\displaystyle 3y^2y^{'\:}-3axy^{'\:}=3ay-3x^2

Factor it out.

\displaystyle 3y^2y^{'\:}-3axy^'

Common term of 3y'.

\displaystyle 3y^{'\:}\left(y^2-ax\right)

Rewrite the problem down again.

\displaystyle 3y^{'\:}\left(y^2-ax\right)=3ay-3x^2

Divide by 3(y²-ax) from both sides.

\displaystyle \frac{3y^{'\:}\left(y^2-ax\right)}{3\left(y^2-ax\right)}=\frac{3ay}{3\left(y^2-ax\right)}-\frac{3x^2}{3\left(y^2-ax\right)}

Solve. (Simplify to find the answer.)

\displaystyle y^{'\:}=\frac{ay-x^2}{y^2-ax}

Don't forget to write by the y' of d/dx (y).

\displaystyle \boxed{\frac{D}{DX}\left(y\right)=\frac{ay-x^2}{y^2-ax}}

\Large\boxed{\frac{D}{DX}\left(y\right)=\frac{ay-x^2}{y^2-ax}=\boxed{\frac{ay-x^2}{y^2-ax} }}

Hence, the correct answer is ay-x²/y²-ax.

Similar questions