Math, asked by ravendrakumar4827, 10 months ago

Implicite function
If sin y = log(x+y) then dy/dx.

Answers

Answered by rishu6845
12

Answer:

\bold{ \dfrac{dy}{dx}  =  \dfrac{1}{(x + y) \: cosy \:  - 1} }

Step-by-step explanation:

\bold{To \: find} =  > derivative \: of \:  \\ siny =  log(x + y)

\bold{Concept \: used }=  >  \\ 1) \:  \dfrac{d}{dx} (sinx) =cosx \\ 2) \:  \dfrac{d}{dx} ( logx)  =  \dfrac{1}{x}

\bold{Solution} =  >  \\ siny =  log(x + y)

differentiating \: with \: respect \: to \: x

 =  >  \dfrac{d}{dx} (siny) =  \dfrac{d}{dx}  log(x + y)

 =  > cosy \:  \dfrac{dy}{dx}  =  \dfrac{1}{x + y}   \: \dfrac{d}{dx} (x + y)

 =  > (x + y) \: cosy \:  \dfrac{dy}{dx}  =  \dfrac{d}{dx} (x) +  \dfrac{dy}{dx}

 =  > (x + y) \: cosy \:  \dfrac{dy}{dx}  -  \dfrac{dy}{dx}  = 1

 =  > ( \: (x + y)cosy \:  - 1 \: ) \:  \dfrac{dy}{dx}  \:  = 1

 =  >  \:  \dfrac{dy}{dx}  =  \dfrac{1}{(x + y) \: cosy \:  - 1}

Similar questions