Computer Science, asked by ingalepragati83, 7 months ago

Import pandas as pd Import numpy as np Data =np.array([55,68,98,26,37]) s1=pd.Seires (data,index=[‘a’, ‘b’,’c’, ‘d’, ‘e’]) s2=s1.reindex ([‘b’,’d’,’a’,’c’,’e’]) s3=s1.reindex([‘f’, ‘g’, ‘c’, ‘b’, ‘a’]) print(s1) print(s2) print(s3) find output

Answers

Answered by nitinkumars74
0

Answer:

Explanation:This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

Customarily, we import as follows:

In [1]: import numpy as np

In [2]: import pandas as pd

Object creation

See the Data Structure Intro section.

Creating a Series by passing a list of values, letting pandas create a default integer index:

In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [4]: s

Out[4]:  

0    1.0

1    3.0

2    5.0

3    NaN

4    6.0

5    8.0

dtype: float64

Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns:

In [5]: dates = pd.date_range('20130101', periods=6)

In [6]: dates

Out[6]:  

DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',

              '2013-01-05', '2013-01-06'],

             dtype='datetime64[ns]', freq='D')

In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))

In [8]: df

Out[8]:  

                  A         B         C         D

2013-01-01  0.469112 -0.282863 -1.509059 -1.135632

2013-01-02  1.212112 -0.173215  0.119209 -1.044236

2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

2013-01-04  0.721555 -0.706771 -1.039575  0.271860

2013-01-05 -0.424972  0.567020  0.276232 -1.087401

2013-01-06 -0.673690  0.113648 -1.478427  0.524988

Similar questions