important formulae of chapter trigonometric functions class 11 ?
Answers
Answered by
1
Trigonometry Class 11 Formulas
sin(−θ)=−sinθ
sin(−θ)=−sinθ
cos(−θ)=cosθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
sec(−θ)=secθ
cot(−θ)=−cotθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=
1
2
[cos(x–y)−cos(x+y)]
sinx siny=12[cos(x–y)−cos(x+y)]
cosxcosy=
1
2
[cos(x–y)+cos(x+y)]
cosxcosy=12[cos(x–y)+cos(x+y)]
sinxcosy=
1
2
[sin(x+y)+sin(x−y)]
sinxcosy=12[sin(x+y)+sin(x−y)]
cosxsiny=
1
2
[sin(x+y)–sin(x−y)]
cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(
x+y
2
)cos(
x−y
2
)
sinx+siny=2sin(x+y2)cos(x−y2)
sinx−siny=2cos(
x+y
2
)sin(
x−y
2
)
sinx−siny=2cos(x+y2)sin(x−y2)
cosx+cosy=2cos(
x+y
2
)cos(
x−y
2
)
cosx+cosy=2cos(x+y2)cos(x−y2)
cosx−cosy=–2sin(
x+y
2
)sin(
x−y
2
)
cosx−cosy=–2sin(x+y2)sin(x−y2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB–cosAsinB
sin(A−B)=sinAcosB–cosAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A–B)=cosAcosB+sinAsinB
cos(A–B)=cosAcosB+sinAsinB
tan(A+B)=
tanA+tanB
1–tanAtanB
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=
tanA–tanB
1+tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
cos(A+B)cos(A–B)=
cos
2
A–
sin
2
B=
cos
2
B–
sin
2
A
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=
sin
2
A–
sin
2
B=
cos
2
B–
cos
2
A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sin2A=2sinAcosA=
2tanA
1+
tan
2
A
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=
cos
A
–
sin
2
A=1–2si
n
2
A=2co
s
2
A–1=
1−
tan
2
A
1+
tan
2
A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=
2tanA
1–
tan
2
A
tan2A=2tanA1–tan2A
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
cos3A=4
cos
3
A–3cosA=4cos(
60
∘
−A).cosA.cos(
60
∘
+A)
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=
3tanA–
tan
3
A
1−3
tan
2
A
=tan(
60
∘
−A).tanA.tan(
60
∘
+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
sinA+sinB=2sin
A+B
2
cos
A−B
2
sinA+sinB=2sinA+B2cosA−B2
sin(−θ)=−sinθ
sin(−θ)=−sinθ
cos(−θ)=cosθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
tan(−θ)=−tanθ
cosec(−θ)=−cosecθ
cosec(−θ)=−cosecθ
sec(−θ)=secθ
sec(−θ)=secθ
cot(−θ)=−cotθ
cot(−θ)=−cotθ
Product to Sum Formulas
sinx siny=
1
2
[cos(x–y)−cos(x+y)]
sinx siny=12[cos(x–y)−cos(x+y)]
cosxcosy=
1
2
[cos(x–y)+cos(x+y)]
cosxcosy=12[cos(x–y)+cos(x+y)]
sinxcosy=
1
2
[sin(x+y)+sin(x−y)]
sinxcosy=12[sin(x+y)+sin(x−y)]
cosxsiny=
1
2
[sin(x+y)–sin(x−y)]
cosxsiny=12[sin(x+y)–sin(x−y)]
Sum to Product Formulas
sinx+siny=2sin(
x+y
2
)cos(
x−y
2
)
sinx+siny=2sin(x+y2)cos(x−y2)
sinx−siny=2cos(
x+y
2
)sin(
x−y
2
)
sinx−siny=2cos(x+y2)sin(x−y2)
cosx+cosy=2cos(
x+y
2
)cos(
x−y
2
)
cosx+cosy=2cos(x+y2)cos(x−y2)
cosx−cosy=–2sin(
x+y
2
)sin(
x−y
2
)
cosx−cosy=–2sin(x+y2)sin(x−y2)
Basic Formulas
sin(A+B)=sinAcosB+cosAsinB
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB–cosAsinB
sin(A−B)=sinAcosB–cosAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A+B)=cosAcosB–sinAsinB
cos(A–B)=cosAcosB+sinAsinB
cos(A–B)=cosAcosB+sinAsinB
tan(A+B)=
tanA+tanB
1–tanAtanB
tan(A+B)=tanA+tanB1–tanAtanB
tan(A–B)=
tanA–tanB
1+tanAtanB
tan(A–B)=tanA–tanB1+tanAtanB
cos(A+B)cos(A–B)=
cos
2
A–
sin
2
B=
cos
2
B–
sin
2
A
cos(A+B)cos(A–B)=cos2A–sin2B=cos2B–sin2A
sin(A+B)sin(A–B)=
sin
2
A–
sin
2
B=
cos
2
B–
cos
2
A
sin(A+B)sin(A–B)=sin2A–sin2B=cos2B–cos2A
sin2A=2sinAcosA=
2tanA
1+
tan
2
A
sin2A=2sinAcosA=2tanA1+tan2A
cos2A=
cos
A
–
sin
2
A=1–2si
n
2
A=2co
s
2
A–1=
1−
tan
2
A
1+
tan
2
A
cos2A=cosA–sin2A=1–2sin2A=2cos2A–1=1−tan2A1+tan2A
tan2A=
2tanA
1–
tan
2
A
tan2A=2tanA1–tan2A
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
\sin 3A = 3\sin A – 4\sin^{3}A = 4\sin\left(60^{\circ}-A).\sin A .\sin\left( 60^{\circ}+A \right )
cos3A=4
cos
3
A–3cosA=4cos(
60
∘
−A).cosA.cos(
60
∘
+A)
cos3A=4cos3A–3cosA=4cos(60∘−A).cosA.cos(60∘+A)
tan3A=
3tanA–
tan
3
A
1−3
tan
2
A
=tan(
60
∘
−A).tanA.tan(
60
∘
+A)
tan3A=3tanA–tan3A1−3tan2A=tan(60∘−A).tanA.tan(60∘+A)
sinA+sinB=2sin
A+B
2
cos
A−B
2
sinA+sinB=2sinA+B2cosA−B2
Similar questions