Math, asked by legendx31, 6 months ago

important ha jaldi batto ​

Attachments:

Answers

Answered by prince5132
11

GIVEN :-

  • ∠PQR = ∠PRQ.

TO PROVE :-

  • ∠PQS = ∠PRT

SOLUTION :-

By using the exterior angle property of triangle we have,

➳ ∠PQS = ∠QPR + ∠PRQ. ....Eq(1)

Similarly,

➳ ∠PRT = ∠QPR + ∠PQR. ....Eq(2)

Now substitute the given values in Equation 1.

➳ ∠PQS = ∠QPR + ∠PQR. ....Eq(1)

Hence the R.H.S of both the equation are equal . So the L.H.S of both the equation are also equal,

➳ ∠PRT = ∠PQS

Hence Proved

Attachments:
Answered by Anonymous
4

Diagram:

\setlength{\unitlength}{1cm} \begin{picture}(6, 6) \thicklines\put(3, 2){\vector(1,0){3}} \put(3, 2){\vector( - 1,0){3}} \put(1, 2){\line(1,1){2}} \put(5, 2){\line( - 1,1){2}} \multiput(0.5,1.8)(5,0){2}{\line(0,1){0.5}}\put(3,4.1){\sf P} \put(1,1.6){\sf Q} \put(0.2,1.6){\sf S} \put(4.8,1.6){\sf R}\put(5.6,1.6){\sf T} \put(2,5){\Large @BLACKSKULL} \end{picture}

Given:

  • \angle PQR = \angle PRQ

Prove That:

  • \angle PQS = \angle PRT

Solution:

In the given fig. ST is a straight line and ray QP stands on it.

So,

 \displaystyle{\spadesuit\sf \angle PQR + \angle PQS =  {180}^{ \circ}  \qquad  \big\lgroup{ \because Linear \: Pair }  \big\rgroup }\\

Now,

 \displaystyle{\dashrightarrow\sf  \angle PQR + \angle PQS =  {180}^{ \circ}} \\  \\

 \displaystyle{\dashrightarrow\sf  \angle PQR  =  {180}^{ \circ} -   \angle PQS }\\  \\

 \displaystyle{\to\sf \angle PQR  =  {180}^{ \circ} -   \angle PQS }........1\\  \\

Again

 \displaystyle{\spadesuit\sf \angle PRQ + \angle PRT =  {180}^{ \circ}  \qquad  \big\lgroup{ \because Linear \: Pair }  \big\rgroup} \\

Now,

 \displaystyle{\dashrightarrow\sf \angle PRQ + \angle PRT =  {180}^{ \circ}}\\  \\

 \displaystyle{\dashrightarrow\sf  \angle PRQ  =  {180}^{ \circ} -  \angle PRT  }\\  \\

 \displaystyle{\to\sf  \angle PRQ  =  {180}^{ \circ} -  \angle PRT  }......2\\  \\

It is given that \angle PQR = \angle PRQ

Using eq(1) and (2)

  • \angle PQR = 180° - \angle PQS
  • \angle PRQ = 180° - \angle PRT

we, get

 \displaystyle{\leadsto\sf  {180}^{ \circ}  - \angle PQS  =  {180}^{ \circ} -  \angle PRT  }\\  \\

 \displaystyle{\leadsto\sf - \angle PQS  = -  \angle PRT  }\\  \\

 \displaystyle{\leadsto\sf \angle PQS  = \angle PRT  }\\  \\

 \displaystyle{\therefore\sf \angle PQS  = \angle PRT  }\\  \\

Hence, Proved

Similar questions