Math, asked by TheLifeRacer, 7 months ago

important question for 12th board .

Attachments:

Answers

Answered by Anonymous
29

AnswEr :

Given Expression,

 \sf y =  \sqrt{ \cos(x)  +  \sqrt{ \cos(x)  +  \sqrt{ \cos(x) +  \dots \infty  } }  }

The expression can be re written as :

 \longrightarrow  \sf \: y =  \sqrt{ \cos(x) + y }

Squaring on both sides,

 \longrightarrow \sf \:  {y}^{2}  = cos \: x + y

Differentiating w.r.t x,

 \longrightarrow \sf \:  \dfrac{ {dy}^{2} }{dx}  =  \dfrac{d(cos \: x)}{dx}  +  \dfrac{dy}{dx}  \\  \\  \longrightarrow \sf \: 2y \dfrac{dy}{dx}  =  - sin \: x +  \dfrac{dy}{dx}  \\  \\ \longrightarrow \sf 2y \dfrac{dy}{dx} - \dfrac{dy}{dx} = - sin \ x\\ \\  \longrightarrow \sf \:  \dfrac{dy}{dx} (2y - 1) =  - sin \: x \\  \\  \longrightarrow \boxed{ \boxed{ \sf  \frac{dy}{dx}  =  \dfrac{ - sin \: x}{2y - 1}  }}

Formulas Used

  • Derivative of cos x is - sin x

  • Derivative of a constant is zero

  • dxⁿ/dx = nxⁿ/x

BrainlyPopularman: Perfect ❤
Anonymous: Thank you!
mddilshad11ab: well explained bro
Answered by Anonymous
35

Given :

If \sf\:y=\sqrt{\cos\:x+\sqrt{\cos\:x+\sqrt{\cos\:x+...\infty}}}

To Find :

dy/dx

Formula :

• Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

 \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

• Differentiation Formula's

1) \dfrac{d(sinx)}{dx}  = cosx

2) \dfrac{d(x {}^{n}) }{dx}  = nx {}^{n - 1}

3) \dfrac{d(constant)}{dx}  = 0

Solution :

\sf\:y=\sqrt{\cos\:x+\sqrt{\cos\:x+\sqrt{\cos\:x+...\infty}}}

\sf\implies\:y=\sqrt{\cos\:x+y}

Now squaring on both sides

\sf\implies\:y^2=\cos\:x+y

\sf\implies\:y^2-y=x

Now differentiate with respect to x

\sf\implies2y\dfrac{dy}{dx}-\dfrac{dy}{dx}=-sin\:x

\sf\implies(2y-1)\dfrac{dy}{dx}=-\sin\:x

\sf\implies\dfrac{dy}{dx}=\dfrac{-\sin\:x}{2y-1}

\sf\implies\dfrac{dy}{dx}=\dfrac{\sin\:x}{1-2y}

Hence proved !


Anonymous: Amazing!
Anonymous: Awesomeee
Anonymous: Thank you ❤️
mddilshad11ab: perfect explaination ✔️ bro
Similar questions