Math, asked by RJRishabh, 11 months ago

Important question for 12th .

Inverse trigonometry . ​

Attachments:

Answers

Answered by TheLifeRacer
2

Hii

Step-by-step explanation:

#Answerwithquality#BAL

Solution is in this attachment .

Hope it's helpful

@Raj ✌

Attachments:
Answered by Siddharta7
2

Answer:

2b/a

Step-by-step explanation:

Given,

tan(\frac{\pi }{4} + \frac{1}{2} cos^{-1} \frac{a}{b}) + tan(\frac{\pi }{4} - \frac{1}{2} cos^{-1} \frac{a}{b})

Let cos⁻¹(a/b) = ∅,

Then, cos∅ = (a/b) and (1/2) cos⁻¹(a/b) = ∅/2.

Now,

\Rightarrow tan[\frac{\pi }{4} + \frac{\theta}{2}] +  tan[\frac{\pi }{4} - \frac{\theta}{2}]

\Rightarrow \frac{tan\frac{\pi }{4} + tan\frac{\theta}{2} }{1 - tan\frac{\pi }{4} tan\frac{\theta}{2}} + \frac{tan\frac{\pi }{4} - tan\frac{\theta}{2} }{1 + tan\frac{\pi }{4} tan\frac{\theta}{2}}

\Rightarrow \frac{1 + tan\frac{\theta}{2}}{1 - tan\frac{\theta}{2}} + \frac{1 - tan\frac{\theta}{2}}{1 + tan\frac{\theta}{2}}

\Rightarrow \frac{(1 + tan\frac{\theta}{2})^2 + (1 - tan\frac{\theta}{2})^2}{1 - tan^2\frac{\theta}{2} }

\Rightarrow 2(\frac{1}{cos\theta})

\Rightarrow \frac{2b}{a}

Hope it helps!

Similar questions