Math, asked by MiniDoraemon, 2 months ago

Important Question for jee mains.
mathamatics :-Practice set 1 ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  \sqrt[3]{1 - 3x}  + 3 {cos}^{ - 1}\bigg(\dfrac{2x - 1}{3} \bigg) +  {e}^{3tanx}

Consider,

\rm :\longmapsto\:  \sqrt[3]{1 - 3x}

Let assume that

\rm :\longmapsto\:g(x) = \sqrt[3]{1 - 3x}

We know,

Domain is the set of those values where function is well defined.

Since, cube root is defined for all real numbers.

So,

\bf\implies \:Domain \: of \: g(x), \: D_g \:  =  \: R

Now,

Consider,

\rm :\longmapsto\:h(x) = 3 {cos}^{ - 1}\bigg(\dfrac{2x - 1}{3} \bigg)

We know,

\rm :\longmapsto\: {cos}^{ - 1}x \: is \: defined \: when \:  - 1 \leqslant x \leqslant 1

So,

In order that, h(x) is defined

\rm :\longmapsto\: - 1 \leqslant \dfrac{2x - 1}{3}  \leqslant 1

\rm :\longmapsto\: - 3 \leqslant 2x - 1 \leqslant 3

\rm :\longmapsto\: - 3 + 1 \leqslant 2x - 1 + 1 \leqslant 3 + 1

\rm :\longmapsto\: - 2 \leqslant 2x \leqslant 4

\rm :\longmapsto\: - 1\leqslant x \leqslant 2

Hence,

\bf\implies \:Domain \: of \: h(x), \: D_h \:  =  \:  - 1 \leqslant x \leqslant 2

Consider,

\rm :\longmapsto\:p(x) =  {e}^{3tanx}

We know that,

\rm :\longmapsto\:tanx \: is \: defined \: when \: x \:  \ne \: odd \: multiples \: of \: \dfrac{\pi}{2}

So,

Domain of p(x) is defined as

\rm :\longmapsto\:Domain = R -  \{(2n - 1)\dfrac{\pi}{2} \} \: where \: n \: is \: natural \: number

So,

Domain of f(x) =

\rm \:  =  \:  \:D_g \:  \cup \: D_h \:  \cap \: D_p

\rm \:  = x \:   \in \: \: - 1 \leqslant x \leqslant 2 - \bigg \{\dfrac{\pi}{2}\bigg \}

\rm \:  =  \:  \:x \:  \in \: [ - 1, \: 2] - \bigg \{\dfrac{\pi}{2} \bigg\}

So,

  • Option (d) is correct.

Similar questions