Math, asked by MiniDoraemon, 1 month ago

Important Question for jee mains.
mathamatics :- Practice set 1 ​

Attachments:

Answers

Answered by ridhya77677
1

Answer:

Answer in the attachment

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

It is given that

\rm :\longmapsto\: \alpha , \beta  \: are \: roots \: of \: a {x}^{2}  + bx + c = 0

\bf\implies \:a {x}^{2}  + bx + c = a(x -  \alpha )(x -  \beta ) -  - (1)

Now,

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to  \alpha } {\bigg(1 + a {x}^{2} + bx + c \bigg) }^{\dfrac{1}{x -  \alpha } }

can be rewritten as

\rm \:  = \:\displaystyle\lim_{x \to  \alpha } {\bigg(1 + a (x -  \alpha )(x -  \beta ) \bigg) }^{\dfrac{1}{x -  \alpha } }

can be further rewritten as

\rm \:  = \:\displaystyle\lim_{x \to  \alpha } {\bigg(1 + a (x -  \alpha )(x -  \beta ) \bigg) }^{\dfrac{a(x -  \alpha )(x -  \beta )}{a(x -  \alpha )(x -  \beta )(x -  \alpha)} }

\rm \:  = \:\displaystyle\lim_{x \to  \alpha } {\bigg(1 + a (x -  \alpha )(x -  \beta ) \bigg) }^{\dfrac{a(x -  \beta )}{a(x -  \alpha )(x -  \beta )} }

We know,

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} {(1 + x)}^{ \frac{1}{x} } = e}}

So, using this result we get

\rm \:  =  \:  \: {e} \:  \: ^{\displaystyle\lim_{x \to  \alpha }a(x -  \beta )}

\rm \:  =  \:  \: {e} \:  ^{a( \alpha  -  \beta )}

Hence,

\rm :\longmapsto\:\displaystyle\lim_{x \to  \alpha } {\bigg(1 + a {x}^{2} + bx + c \bigg) }^{\dfrac{1}{x -  \alpha } }   =  \:  \: {e} \:  ^{a( \alpha  -  \beta )}

Additional Information :-

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{tan^{ - 1} x}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{sin^{ - 1} x}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \sf{ \:\displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions