In √1+sin A /1-sin A = sec A + tan A, Prove RHS=LHS.
Answers
Answered by
0
Step-by-step explanation:
1−sinA1+sinA=(1−sinA)(1−sinA)(1+sinA)(1−sinA)
=(1−sinA)21−sin2A
=(1−2sinA+sin2A)cos2A
=(1cos2A−2sinAcos2A+sin2Acos2A)
=(sec2A−2.1cosA.sinAcosA+tan2A)
=(sec2A−2secA.tanA+tan2A)
=(secA−tanA)2
Hence proved.
Note: The question should be (1−sinA1+sinA)=(secA−tanA)2
Similar questions