Math, asked by safwanfarhan6900, 10 months ago

"In 1985, the population of town A and town B were the same.From 1985 to 1995 the population of town A increased by 60% while the population of town B decreased by 60%.What percentage of the population of town A was the population of town B in 1995?" plz help me by answering the problem.​

Answers

Answered by Anonymous
40

AnswEr :

  • Let the Population of town A and town B be 100 in Year 1985.

Population of town A in 1995

 \longrightarrow \mathsf{New  \: Population =  100 \times   \dfrac{(100 + Incr\%)}{100}}

 \longrightarrow \mathsf{New  \: Population =  100 \times   \dfrac{(100 + 60\%)}{100}}

 \longrightarrow \mathsf{New  \: Population =   \cancel{100} \times   \dfrac{160}{ \cancel{100}}}

 \longrightarrow \mathsf{New  \: Population =  160}

Population of town B in 1995

 \longrightarrow \mathsf{New  \: Population =  100 \times   \dfrac{(100  -  Decr\%)}{100}}

 \longrightarrow \mathsf{New  \: Population =  100 \times   \dfrac{(100  -  60\%)}{100}}

 \longrightarrow \mathsf{New  \: Population =   \cancel{100} \times   \dfrac{40}{ \cancel{100}}}

 \longrightarrow \mathsf{New  \: Population =  40}

Let the Percentage of the Population of town A of town B be x%.

 \longrightarrow \mathsf{x\% \times New  \: Population_A=New  \: Population_B}

 \longrightarrow \mathsf{ \dfrac{x}{100}  \times  \cancel{160} =  \cancel{40}}

 \longrightarrow \mathsf{ \dfrac{x}{ \cancel{100}} \times  \cancel{4} = 0}

 \longrightarrow \mathsf{ \dfrac{x}{25}  = 0}

 \longrightarrow  \boxed{\mathsf{x = 25\%}}

 \therefore The population of town A was 25% of the population of town B in 1995.

Similar questions