Math, asked by mmehalai82gmailcom, 4 months ago

In A (-1, 1), B(1, 3) and C(3, a) point and if AB = BC than find a in coordinate geometry​

Answers

Answered by sharanyalanka7
3

\sf{answer}

formula required:-

Distance formula :

 d =  \sqrt{(x_2 - x_1)^{2}  + (y_2 - y_1)^{2} }

given,

A (-1, 1), B(1, 3) and C(3, a).

to find:-

value of 'a'.

\sf\underline{solution}

first we find AB and next BC

in, AB:-

A = (-1,1)

let:- -1 = \sf{x_1}

1 = \sf{y_1}

B = (1,3)

1 = \sf{x_2}

3 = \sf{y_2}

.: AB = \sqrt{(1-(-1))²+(3-1)²}

= \sqrt{(2)²+(2)²}

= \sqrt{4+4}

= \sqrt{8}

= 2\sqrt{2}

in BC,

B = (1,3)

let

1 = \sf{x_1}

3 = \sf{y_1}

C = (3,a)

3 = \sf{x_2}

a = \sf{y_2}

.: BC = \sqrt{(3-1)²+(a-3)²}

= \sqrt{(2)²+(a²-2(a)(3)+(-3)²}

= \sqrt{4+a²-6a+9}

= √a²-6a+13

.: AB = BC

2√2 = √a²-6a+13

squaring on both sides

(2√2)² = (√a²-6a+13)²

4×2 = a²-6a+13

8 = a²-6a+13

a²-6a+13-8= 0

a²-6a+5 = 0

a²-5a-a+5 = 0

a(a-5)-1(a-5) = 0

(a-1)(a-5) = 0

.: a = 1,5

Answered by hemanji2007
2

Answer:

Formulae used is distance formulae

(x2-x1) ²+ ( y2-y1)²

Give that:

A(-1,1) B(1,3) C(3,a)

To Find :

the value of a

Solution:

First we have to find AB

in AB A=(-1,1)

So, -1=x1

then 1= y1

Now B = (1,3)

Let 1=x2

and 3=y2

.: AB = ( 1-(-1) )² + (3-1)²

= (2)²+(2)²

= 4+4

= 8

= 2×4

=2×4

=22

Similar questions