Math, asked by akmalkhan95, 1 year ago

In a= √15 +4√14 and b= √15 -4 √14 find a^3 +b^3​

Answers

Answered by Anonymous
9

Answer :-

Given that :-

 \sf{a = \sqrt{15} + 4\sqrt{14}}

 \sf{b = \sqrt{15} - 4\sqrt{14}}

Now as we have this Identity :-

 \sf{( a+b)^3 = a^3 + 3ab(a+b) + b^3}

 \implies \sf{ a^3 + b^3 = (a+b)^3 - 3ab(a+b) }

Now by putting the values of "a" and "b"

 \implies \tiny{\sf{a^3 + b^3 = (\sqrt{15} + 4\sqrt{14} + \sqrt{15} - 4\sqrt{14})^3 - 3(\sqrt{15} + 4\sqrt{14})(\sqrt{15} - 4\sqrt{14})(\sqrt{15} +4\sqrt{14}+\sqrt{15} - 4\sqrt{14})}}

 \implies \sf{a^3 + b^3 = (2\sqrt{15})^3 - 3(\sqrt{15}^2 - (4\sqrt{14})^2)(2\sqrt{15})}

 \implies \sf{ a^3 + b^3 = 8(15\sqrt{15}) - 3(15 - 224)(2\sqrt{15})}

 \implies \sf{a^3 + b^3 = 120\sqrt{15} -3(-209)(2\sqrt{15})}

 \implies \sf{a^3 + b^3 = 120\sqrt{15} + 1254\sqrt{15}}

 \implies \sf{a^3 + b^3 = 1374\sqrt{15}}


akmalkhan95: thanks
Answered by LovelyG
9

Answer:

\large{\underline{\boxed{\sf a {}^{3}  +  {b}^{3 }  = 1374 \sqrt{15}}}}

Step-by-step explanation:

Given that :

 \sf a =  \sqrt{15}  + 4 \sqrt{14}  \\  \sf b  =  \sqrt{15}  - 4 \sqrt{14}

Now, find (a + b) -

 \sf a + b =  \sqrt{15}  + 4 \sqrt{14}  +  \sqrt{15}  - 4 \sqrt{14}  \\  \\ \sf a + b = 2 \sqrt{15}

Also, find the product of ab-

 \sf ab = ( \sqrt{15}  + 4 \sqrt{14})( \sqrt{15}  - 4 \sqrt{14} ) \\  \\ \sf ab = ( \sqrt{15}) {}^{2}  - (4 \sqrt{14} )^{2}  \\  \\ \sf ab = 15 - 224 \\  \\ \sf ab =  - 209

We will use identity -

  • (a + b)³ = a³ + b³ + 3ab(a + b)

 \sf \implies a + b = 2 \sqrt{15}  \\  \\ \bf cubing \: both \: sides -  \\  \\ \sf \implies (a + b) {}^{3}  = (2 \sqrt{15}) {}^{3}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3 }  + 3ab(a + b) = 120\sqrt{15}  \\  \\\implies \sf a {}^{3}  +  {b}^{3 }  + 3  ( - 209)(2 \sqrt{15} ) = 120 \sqrt{15}  \\  \\ \implies  \sf a {}^{3}  +  {b}^{3 }  - 627(2 \sqrt{15} ) = 120 \sqrt{15}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3 }  - 1254 \sqrt{15}  = 120 \sqrt{15}  \\  \\ \implies \sf a {}^{3}  +  {b}^{3 }  = 120 \sqrt{15}  + 1254 \sqrt{15}  \\  \\  \boxed{\bf a {}^{3}  +  {b}^{3 }  = 1374 \sqrt{15} }

Similar questions