Math, asked by anilapalika265, 5 months ago

in a ∆ABC, angleA=angleC, is cosA=cosB?​

Answers

Answered by Anendramishra3112008
14

Answer:

\mathbf{\color{purple}{\huge{✮}}}\mathbf{\blue{\huge{A}}}\mathbf{\color{aqua}{\huge{N}}}\mathbf{\green{\huge{S}}}\mathbf{\color{yellow}{\huge{W}}}\mathbf{\orange{\huge{E}}}\mathbf{\red{\huge{R}}}\mathbf{\color{maroon}{\huge{✮}}}

Given: In triangle ABC

Angle B=90 degree

Angle A=Angle C

To find:

(1) SinA Cos C+Cos ASin C

(2) SinASin B+CosA Cos B

Solution:

In triangle ABC

\angle A+\angle B+\angle C=180^{\circ}∠A+∠B+∠C=180

Using triangle angles sum property

Substitute the values

\angle A+90+\angle A=180∠A+90+∠A=180

2\angle A=180-90=902∠A=180−90=90

\angle A=\frac{90}{2}=45^{\circ}∠A= 290 =45 ∘

\angle A=\angle C=45^{\circ}∠A=∠C=45 ∘

(1)

Sin 45Cos 45+Cos 45Sin 45Sin45Cos45+Cos45Sin45

\frac{1}{\sqrt 2}\times \frac{1}{\sqrt 2}+\frac{1}{\sqrt 2}\times \frac{1}{\sqrt 2}

2 1 × 21 + 21× 21

\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2}=\frac{2}{2}

21 + 21 = 21+1 = 22=1=1(2)

Sin 45Sin90+Cos45Cos 90Sin45Sin90+Cos45Cos90

\frac{1}{\sqrt 2}\times 1+\frac{1}{\sqrt 2}\times 0 2 1 ×1+ 21 ×0\frac{1}{\sqrt 2} 21

\huge{\underline{\boxed{\purple{{★ Hence \: Verified ★}}}}}

Similar questions