In a Δ ABC, if L and M are points on AB and AC respectively such that LM||BC. Prove that:
(i) ar(Δ LCM) = ar(Δ LBM)
(ii) ar(Δ LBC) = ar(Δ MBC)
(iii) ar(Δ ABM) = ar(Δ ACL)
(iv) ar(Δ LOB) = ar(Δ MOC)
Answers
Given : In a Δ ABC, if L and M are points on AB and AC respectively such that LM || BC.
To prove : (i) ar(Δ LCM) = ar(Δ LBM)
(ii) ar(Δ LBC) = ar(Δ MBC)
(iii) ar(Δ ABM) = ar(Δ ACL)
(iv) ar(Δ LOB) = ar(Δ MOC)
Proof :
(i) Clearly, ∆'s LMB and LMC are on the same base LM and between the same parallels LM and BC.
∴ ar(Δ LCM) = ar(Δ LBM) ……….. (i)
(ii) Here, ∆'s LBC and MBC are on the same base BC and between the same parallels LM and BC.
∴ ar (ΔLBC) = ar (ΔMBC) ……...(ii)
(iii) We have,ar (∆LMB) = ar (∆LMC) [From eq (i)]
On adding ar (∆ALM) on both sides :
ar (∆LMB) + ar (∆ALM) = ar (∆LMC) + ar (∆ALM)
ar (∆ABM) = ar (∆ACL)
(iv) We have,
ar (ΔLBC) = ar (ΔMBC)
[From eq (ii)]
On subtracting ar (∆BOC) from both sides :
ar (ΔLBC) - ar (∆BOC) = ar (ΔMBC) - ar (∆BOC)
ar (∆LOB) = ar(∆MOC)
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
If ABC and BDE are two equilateral triangles such that D is the mid-point of BC, then find ar(ΔABC) :ar(ΔBDE)
https://brainly.in/question/15910090
ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that (i) ar(Δ ADO) = ar(Δ CDO) (ii) ar(Δ ABP) = ar(Δ CBP)
https://brainly.in/question/15909768
Answer:
since, ΔBCA and ΔBYA are on the same base BA and between asme parallels BA and CY Then area (ΔBCA)
\bf \red{→}ar(BYA)→ar(BYA)
\bf \pink{→}ar(Δ CBX) + ar(Δ BXA) =→ar(ΔCBX)+ar(ΔBXA)=
\bf = ar(Δ BXA) + ar(Δ AXY)=ar(ΔBXA)+ar(ΔAXY)
\bf \red{→}ar(Δ CBX) = ar(ΔBXA) =→ar(ΔCBX)=ar(ΔBXA)=
\bf = ar(Δ BXA) + ar(Δ AXY)=ar(ΔBXA)+ar(ΔAXY)
\bf \pink→ ar (Δ CBX )= ar(Δ AXY) \: \: ...(i)→ar(ΔCBX)=ar(ΔAXY)...(i)
Since, ΔACE are on the same base AE and between same parallels CD and AE
Then, ar (ΔACE) ar (ΔADE)
= (ΔCLA) + ar (ΔAZE) = ar (ΔAZE) + ar (ΔDZE)
= ar (ΔCZA) = (ΔDZE) ...... (2)
Since, ΔCBY and ΔCAY ar on the same base CY and between same parallels
BA and CY
Then ar (ΔCBY) ar (ΔCAY)
Adding ar (CYG) on both sides, we get
= ar (ΔCBX) + ar (ΔCYZ) = (ΔCAY) + ar (ΔCYZ)
= ar (BCZX) = ar (ΔCZA) .......... (3)
Compare equation (2) and (3) are (BCZY) = ar (ΔDZE)