In A ABC , LB= 90° and Ac²= 2Bc² then
LA =
Answers
Answered by
1
Answer:
The measure of the angle A is 45°.
Step-by-step-explanation:
NOTE: Refer to the attachment for the diagram.
In figure,
△ABC is a right-angled triangle.
m∠B = 90°
AC² = 2 BC² - - - [ Given ]
Now, by Pythagoras theorem,
AC² = AB² + BC²
⇒ 2 BC² = AB² + BC² - - - [ From given ]
⇒ BC² + BC² = AB² + BC²
⇒ BC² = AB²
⇒ AB = BC - - - [ Taking square roots ]
∴ △ABC is an isosceles triangle.
∴ ∠A ≅ ∠C
Now, by angle sum property of triangle,
m∠A + m∠B + m∠C = 180°
⇒ m∠A + 90° + m∠A = 180°
⇒ 2 m∠A + 90° = 180°
⇒ 2 m∠A = 180° - 90°
⇒ 2 m∠A = 90°
⇒ m∠A = 90 ÷ 2
⇒ m∠A = 45°
∴ The measure of the angle A is 45°.
Attachments:
Similar questions