Hindi, asked by kalashinov, 11 months ago

In a ∆ABC
prove that

cot(A/2) + cot(B/2) + Cot(C/2) = (S²/∆)

Answers

Answered by sahildhande987
0

\huge{\underline{\mathfrak{\blue{Solution}}}}

 \sqrt{\dfrac{s(s-b)}{(s-a)(s-c)}} + \sqrt{\dfrac{s(s-c)}{(s-b)(s-a)}} +\sqrt{\dfrac{s(s-c)}{(s-b)(s-a)}} \\ \\ \implies \dfrac{s(s-a)}{ \triangle} +\dfrac{s(s-b)}{ \triangle} +\dfrac{s(s-c)}{ \triangle}  \\ \\ \implies \dfrac{3s^2 -s(a+b+c)}{\triangle} \\ \\ \implies \dfrac{3s^2 - 2s^2 }{\triangle} \\ \\ \huge\boxed{\dfrac{s^2}{\triangle}}

Answered by Anonymous
37

<marquee> ☺ ❤ HeYa maTes ❤ ☺ </marquee>

____________________________________

\huge\underline\mathcal\red{QueStion}

In a ∆ABC

prove that

cot(A/2) + cot(B/2) + Cot(C/2) = (S²/∆)

\huge\underline\mathfrak\red{Answer!!!!!}

refer to the attachment..

Attachments:
Similar questions