In a ∆ABC right angled at B, ∠A = ∠C. Find the values of
(i) sin A cos C + cos A sin C
(ii) sin A sin B + cos A cos B
Answers
Answered by
14
SOLUTION :
(i) Given : In a Δ ABC right angled ∆ at B and ∠A = ∠C.
The value of ∠B is 90° (Given)
In ∆ ABC , ∠B = 90°
∠A + ∠B + ∠C = 180°
[sum of angles of triangle is 180∘]
∠A + 90° + ∠A = 180°
[∠A = ∠C]
2∠A + 90° = 180°
2∠A = 180° - 90°
2∠A = 90°
∠A = 90° /2
∠A = 45°
Hence, the value of ∠A = ∠C is 45°.
sin A cos C + cos A sin C
sin 45° cos 45° + cos 45° sin 45°
[On putting the value of ∠A = ∠C = 45°]
= (1/√2 ×1/√2) + (1/√2 × 1/√2)
[sin 45° = 1/√2 , cos 45° = 1/√2]
= 1/2 + 1/2
= (1 + 1)/2
= 2/2 = 1
sin A cos C + cos A sin C = 1
Hence,the value of sin A cos C + cos A sin C = 1
(ii) sin A sin B + cos A cos B
sin 45° sin 90° + cos 45° cos 90°
= 1/√2 × 1 + 1/√2 × 0
[sin 45° = 1/√2 , cos 45° = 1/√2,sin 90° = 1, cos 90° =0]
= 1/√2 + 0
= 1/√2
sin 45° sin 90° + cos 45° sin 90° = 1/√2
Hence, the value of sin A sin B + cos A cos B = 1/√2.
HOPE THIS ANSWER WILL HELP YOU…
Answered by
17
hello....
∠A + ∠B + ∠C = 180°
⇒ ∠A + 90° + ∠C = 180°
⇒ 2∠A = 90°
⇒ ∠A = ∠C = 45°
Cos A = Cos 45° = 1/√2
Cos C = Sin 45° = 1/√2
Now, Sin B = Sin 90° = 1
Cos B = Cos 90° = 0
i) Sin A . Cos C + Cos A . Sin C
= 1/√2 × 1/√2 + 1/√2 × 1/√2 = 1/√2 + 1/√2= 1
ii) Sin A . SinB + Cos A . Cos B
= 1/√2 × 1 + 1/√2 × 0 = 1/√2
thank you..
∠A + ∠B + ∠C = 180°
⇒ ∠A + 90° + ∠C = 180°
⇒ 2∠A = 90°
⇒ ∠A = ∠C = 45°
Cos A = Cos 45° = 1/√2
Cos C = Sin 45° = 1/√2
Now, Sin B = Sin 90° = 1
Cos B = Cos 90° = 0
i) Sin A . Cos C + Cos A . Sin C
= 1/√2 × 1/√2 + 1/√2 × 1/√2 = 1/√2 + 1/√2= 1
ii) Sin A . SinB + Cos A . Cos B
= 1/√2 × 1 + 1/√2 × 0 = 1/√2
thank you..
jai6678:
Hi
Similar questions