Math, asked by madhuami966, 25 days ago

In A ABC, right-angled at B, AB = 24 cm. BC=7 cm. Determine: (1) sin A, COS A (ii) sin C, cos C​

Answers

Answered by Anonymous
1

Answer:

R.E.F image

In Δ ABC, B is at right angle.

Given, AB=24cm

BC=7cm

using Pythagoras theorem  

AB  

2

+BC  

2

=AC  

2

 

⇒(24)  

2

+(7)  

2

=AC  

2

 

⇒AC=  

(24  

2

)+(7)  

2

 

=  

576+49

=  

625

 

⇒AC=25CM

(i)sin A=  

AC

BC

 

=  

25

7

 

cos A=  

AC

AB

 

=  

25

24

 

(ii)sin C=  

AC

AB

 

=  

25

24

 

cos c=  

AC

BC

 

=  

25

7

   

Step-by-step explanation:

Answered by MysticalShine
30

 \footnotesize \text \blue{➝ Given:-}

 \:

 \footnotesize \text{➝ Right-angled at B}

 \footnotesize \text{➝ AB = 24 cm}

 \footnotesize \text{➝ BC = 7 cm}

 \:

 \footnotesize \text \blue{➝ Solution:-}

 \:

 \footnotesize \text \blue{➝ First find AC (By Pythagoras Theorem)}

 \:

 \footnotesize \text{➝ (AC)² = (AB)² + (BC)²}

 \footnotesize \text{➝ (AC)² = (24)² + (7)²}

 \footnotesize \text{➝  (AC)² = 576 + 49}

 \footnotesize \text{➝  (AC)² = 625}

 \footnotesize \text{➝  AC = √625}

\underline{ \underline{ \boxed{ \footnotesize \text \blue{➝  AC = 25}}}}

 \:

 \footnotesize \text{➝  </p><p>Sin A = BC / AC }

\underline{ \underline{ \boxed{ \footnotesize \text \blue{➝  Sin A = 7/25}}}}

 \:

 \footnotesize \text{➝  </p><p>Cos A = AB / AC }

\underline{ \underline{ \boxed{ \footnotesize \text \blue{➝  Cos A = 24/ 25}}}}

 \:

 \footnotesize \text{➝  </p><p>Sin C = AB / AC }

\underline{ \underline{ \boxed{ \footnotesize \text \blue{➝  Sin C = 24/25}}}}

 \:

 \footnotesize \text{➝  </p><p>Cos C = BC / AC  }

\underline{ \underline{ \boxed{ \footnotesize \text \blue{➝  Cos C = 7/25}}}}

 \:

Note:- The side in front of theta is always considered as Perpendicular (P)

Attachments:
Similar questions