Math, asked by BrainlyHelper, 1 year ago

In a ΔABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
(i) sin A, cos A
(ii) sin C, cos C

Answers

Answered by nikitasingh79
4

Firstly find the remaining side of the triangle by using Pythagoras theorem (AC² = AB² + BC²), find the trigonometric ratios by using the formula given below :  

With reference to ∠A :  

Sin A = perpendicular/ hypotenuse = BC / AC

Cos A = base/Hypotenuse = AB/AC

With reference to ∠C :  

Sin C = perpendicular/ hypotenuse = AB/AC

Cos C = base/Hypotenuse = BC /AC

SOLUTION :  

(i) GIVEN : In Δ ABC , AB= 24 cm , BC = 7cm & ∠ABC = 90°

Now, in Δ ABC,  

AC² = AB² + BC²

[By using Pythagoras theorem]

AC² = 24² + 7²

AC² = 576 + 49

AC² = 625

AC = √625

AC= 25

Hypotenuse (AC) = 25

With reference to ∠A :  

sinA = Perpendicular /Hypotenuse

sinA= BC/AC

sinA=7/25

cosA = Base /Hypotenuse

cosA = AB/AC

cosA= 24/25

Hence, sin A =7/25, cos A = 24/25

 

(ii) With reference to ∠C :  

sin C = Perpendicular /Hypotenuse

sin C = AB/AC

sin C= 24/25

cos C = Base / Hypotenuse

cos A = BC/AC

cosA = 7/25

Hence, sinA =2 4/25, cosA=7 /25

HPE THIS ANSWER WILL HELP YOU....

Attachments:
Answered by VemugantiRahul
0
Hi there !
Here's the Answer:

•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•

¶¶¶ Points to remember ¶¶¶

¶ According to Pythagoras theorem,

In Right Angled ∆
Hypotenuse² = Opposite² + Adjacent²

¶ sin = Opposite/ Hypotenuse
¶ cos = Adjacent/ Hypotenuse

•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•

Solution :

Given,
In Right Angled ∆ABC,
AB = 24 cm
BC = 7 cm

In ∆ABC,
Hyp = AC
Opp = AB
Adj = BC

•°• AC² = AB² + BC²
=> AC² = 24² + 7²
=> AC² = 625
=> AC = √625 = 25

•°• AC = 25 cm

•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•

(i)
• SinA
=> Sin A = BC/AC
=> Sin A = 7/25

• Cos A
=> Cos A = AB/AC
=> Cos A = 24/25

(ii)

• Sin C
=> Sin C = AB/AC
=> Sin C = 24/25

• Cos C
=> Cos C = BC/AC
=> Cos C = 7/25

Here,
•°• Sin A = Cos C = 7/25
& Sin C = Cos A = 24/25

•°•°•°•°•°•<><><<><>><><>°•°•°•°•°•

©#£€®$

:)

Hope it helps
Attachments:
Similar questions