Math, asked by BrainlyBerilius, 16 days ago

In a ΔABC, right angled at
B, AB=24 cm, BC=7 cm
Find AC
By using Pythagoras theorem

Attachments:

Answers

Answered by chnaidu1969
7

Step-by-step explanation:

AB^2+,BC^2=AC^2

24^2+7^2=AC^2

625=AC^2

AC=25cm

hope this helps you better

Answered by Theking0123
646

Given:-  

  • AB = 24 cm
  • BC = 7 cm

To find:-    

  • AC

Formula Used:-    

  • \boxed{\tt{(\:Hypotenuse\:)^{2}\:=\:(\:Height\:)^{2}\:+\:(\:Base\:)^{2}}}

Where,

  • AC = ( Hypotenuse )²
  • AB = ( Height )²
  • BC = ( Base )²

  • \boxed{\tt{(\:AC\:)^{2}\:=\:(\:AB\:)^{2}\:+\:(\:BC\:)^{2}}}

Solution:-    

~Applying Pythagoras theorem

\qquad\tt{:\implies\:(\:Hypotenuse\:)^{2}\:=\:(\:Height\:)^{2}\:+\:(\:Base\:)^{2}}

\qquad\tt{:\implies\:(\:AC\:)^{2}\:=\:(\:AB\:)^{2}\:+\:(\:BC\:)^{2}}

\qquad\tt{:\implies\:(\:AC\:)^{2}\:=\:(\:24\:)^{2}\:+\:(\:7\:)^{2}}

\qquad\tt{:\implies\:(\:AC\:)^{2}\:=\:576\:+\:49}

\qquad\tt{:\implies\:(\:AC\:)^{2}\:=\:625}

\qquad\tt{:\implies\:\:AC\:\:=\:\sqrt{625}}

\qquad\tt{:\implies\:AC\:=\:25\:cm}

Therefore AC = 25 cm.

Attachments:
Similar questions