In a ∆ABC,right angled at B and coses A =√2,the 1/tanA+sinA/1+cosA
Answers
Answer:
[Do not consider theta=30° in figure, it is mistake]
Step-by-step explanation:
Given: cosec A=2.
Cosec A=1/sin A=AC/BC=2/1
AC=2, BC=1
By Pythagoras theorem:
AC²=AB²+BC2
=>2²-1²=AB²
=>4-1=AB²
=>√3=AB.
tanA=BC/AB=1/√3
sinA=BC/AC=1/2.
cosA=AB/AC=√3/2
1/tanA+sinA/1+cosA
=√3+2+√3
=2√3+2.
Hope helps u.
Answer:
√2 – 1
Step-by-step explanation:
As per the information provided in the question, We have :
- Angle B = 90°
- Cosec A = √2
In order to find 1/tanA+sinA/1+cosA, We need to find sides of the triangle. In order to do that we will use Pythagoras theorem.
Trigonometric ratio of Cosec is hyp/per. Thus, Hyp is √2 units and per is 1 unit.
Applying Pythagoras theorem, To find base,
⇒ AC² = AB² + BC²
⇒ (√2)² = AB² + 1²
⇒ 2 = AB² + 1
⇒ AB² = 2 - 1
⇒ AB² = 1
⇒ AB = √1 = 1
∴ Base of the triangle is 1 unit.
Finding 1/tanA+sinA/1+cosA :
Equation - 1/tanA+sinA/1+cosA
Where,
- Tan A = per/base = 1/1 = 1
- Sin A = per/hyp = 1/√2
- Cos A = base/hyp = 1/√2
Substituting the values.
By cancelling √2,
On rationalising,
∴ 1/tanA+sinA/1+cosA = √2 – 1.