In a ∆ABC,
then, find the value of
Answers
Step-by-step explanation:
Given :-
In ∆ ABC , b²+c² = 1999a²
To find :-
The value of (cot B + cot C)/cot A
Solution :-
Given that
In ∆ ABC , b²+c² = 1999a²----------(1)
We know that
Area of a triangle by Heron's formula
∆ = √[S(S-a)(S-b)(S-c)] sq.units -----(2)
Now,
cot A = cos A/sin A
We know that
cos A = (b²+c²-a²)/2bc and sin A = 2∆/bc
Therefore,
cot A = [(b²+c²-a²)/2bc]/(2∆/bc )
On cancelling bc in both numerator and denominator then
cot A = [(b²+c²-a²)/2]/2∆
=> cot A = (b²+c²-a²)/(2×2∆)
=> cot A = (b²+c²-a²)/4∆--------------(3)
and
cot B = cos B / sin B
We know that
cos B = (c²+a²-b²)/2ca and sin B = 2∆/ca
Therefore,
cot B = [(c²+a²-b²)/2ca] / (2∆/ca)
On cancelling ca in both numerator and denominator then
=> cot B = [(c²+a²-b²)/2]/2∆
=> cot B = (c²+a²-b²)/(2×2∆)
=> cot B = (c²+a²-b²)/4∆ -------------(4)
and
cot C = cos C / sin C
we know that
cos C =( a²+b²-c²)/2ab and sin C = 2∆/ab
Now,
Therefore,
cot C = [ (a²+b²-c²)/2ab]/(2∆/ab)
On cancelling ab in both numerator and denominator then
=> cot C = [(a²+b²-c²)/2]/2∆
=> cot C = (a²+b²-c²)/(2×2∆)
=> cot C = (a²+b²-c²)/4∆ -------------(5)
On adding (4) and (5) then
cot B + cot C
= [(c²+a²-b²)/4∆]+[(a²+b²-c²)/4∆]
=> cot B + cot C = (c²+a²-b²+a²+b²+c²)/4∆
=> cot B + cot C = (c²-c²+b²-b²+a²+a²)/4∆
=> cot B + cot C = (0+0+2a²)/4∆
=> cot B + cot C = 2a²/4∆ -------------(6)
On dividing (6) by (3) then
(cot B + cot C)/cot A
=> (2a²/4∆)/[(b²+c²-a²)/4∆]
=> (2a²/4∆) ×[4∆/(b²+c²-a²)]
On cancelling 4∆ then
=> 2a²/(b²+c²-a²)
On dividing both numerator and denominator with a² then
=> (2a²/a²)/[(b²+c²-a²)/a²]
=> 2/[{(b²+c²)/a²}-(a²/a²)]
=> 2/[{(b²+c²)/a²}-1]
From (1) we have
=> 2/[(1999a²/a²)-1]
=> 2/(1999-1)
=> 2/1998
=> 1/999
Therefore, (cot B + cot C)/cot A = 1/999
Answer :-
The value of (cot B + cot C)/cot A is 1/999
Used formulae:-
→ Area of a triangle by Heron's formula
∆ = √[S(S-a)(S-b)(S-c)] sq.units
- Where, S = (a+b+c)/2 units
- a,b and c are the sides
→ cos A = (b²+c²-a²)/2bc
→ cos B = (c²+a²-b²)/2ca
→ cos C = (a²+b²-c²)/2ab
→ sin A = 2∆/bc
→ sin B = 2∆/ca
→ sin C = 2∆/ab
→ Cot θ = Cos θ / Sin θ
Given:-
- b² + c² = 1999a².
To Find:-
Solution:-
substituting the above in
we have,
On simplification, we get
Answer:-
Hope you have satisfied. ⚘