Math, asked by xBrainlyGurlx, 6 months ago

In a ∆ABC, the sides ab and ac are produced to point d and e respectively. the bisectors of ∠DBC and ∠ECB interect at a point O .prove that ∠BOC=(90°-½∠A)​

Answers

Answered by llAloneSameerll
28

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Question:-}}}}}

In a ∆ABC, the sides ab and ac are produced to point d and e respectively. the bisectors of ∠DBC and ∠ECB interect at a point O .prove that ∠BOC=(90°-½∠A)

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

Since ABD is a line,we have

\angle \: B + \angle \: CBD \:  = 180\degree \:  \:  \:  \:  \: (linear \: pair) \\

 ⇒  \frac{1}{2} \angle \: B +  \frac{1}{2} \angle \: CBD = 90\degree

 ⇒  \frac{1}{2} \angle \: B + \angle \: CBO = 90\degree

 ⇒ \angle \: CBO = (90\degree -  \frac{1}{2} \angle \: B). \\

Again,ACE is a straight line.

\therefore \: \angle \: C + \angle \: BCE = 180\degree \:  \:  \: (linear \: pair) \\

 ⇒  \frac{1}{2} \angle \: C +  \frac{1}{2} \angle \: BCE = 90\degree \\

 ⇒  \frac{1}{2} \angle \: C + \angle \: BCO = 90\degree \\

 ⇒ \angle \: BCO = (90\degree -  \frac{1}{2} \angle \: C). \\

We know that the sum of the angles of a triangle is 180°.

So,from ∆OBC , we get

\angle \: CBO + \angle \: BCO \: \angle \: BOC = 180\degree \\

 ⇒ (90\degree -  \frac{1}{2} \angle \:B) + (90\degree -  \frac{1}{2} \angle \: C) + \angle \: boc = 180\degree \\  \:  \:  \:  \:  \:  \: [using \: (i) \: and \: (ii)]

 ⇒ 180\degree -  \frac{1}{2} (\angle \: B + \angle \: C) + \angle \: BOC = 180\degree \\

 ⇒ \angle \: BOC =  \frac{1}{2} (\angle \: A + \angle \: B + \angle \: C) -  \frac{1}{2} \angle \: A \\   \:  \:  \:  \:  \:  \: [adding \: and \: subtracting \:  \frac{1}{2} \angle \: A]

 ⇒ \angle \: BOC = ( \frac{1}{2}  \times 180\degree) -  \frac{1}{2} \angle \: A \: \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   [\therefore \: \angle \: A + \angle \: B + \angle \: C = 180\degree]

 ⇒ \angle \: BOC = (90\degree -  \frac{1}{2} \angle \: A).

hence \: \angle \: BOc = (90\degree -  \frac{1}{2} \angle \: A). \\

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions