In a acute triangle
tan A tan B + tan B tan C + tan C tan A > x then x equals
(a) 3
(b) 3^1/2
(c)5
(d) None of these
Answers
Answered by
1
Answer:
Step-by-step explanation:
using the property in acute triangle,
secAsecBsecC= 1/cosA cos B cos C,
above will be maximum at A=B=C=60 °
∴ Max. (cosAcosBcosC)=1/8,
∴ Min. (secAsecBsecC)=8
Since we have cos(A+B+C)=cosAcosBcosC(1−tanAtanB−tanBtanC−tanCtanA)
Using the above calculated value of angle A+B+C=π and cosθ=−1,
putting above values we get,
tanAtanBtanC+tanCtanA=1+secAsecBsecC
∴tanAtanB+tanBtanC+tanCtanA=9
∴tanAtanB+tanBtanC+tanCtanA>x.
x=3.
Hope it helps.
Similar questions