Math, asked by mmia57244, 5 months ago

In a building there are 24 cylindrical pillars. The radius of each pillar is 28 cm
and height is 4 m. Find the total cost of painting the curved surface area of
all pillars at the rate of ₹ 8.50 per sq m.​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{radius_{(cylinderical \: pillar)} = 28 \: cm} \\ &\sf{height_{(cylinderical \: pillar)} = 4 \: m}\\ &\sf{Number \: of \: pillars \:  = 24}\\ &\sf{Cost \: of \: painting \:  {1 \: m}^{2} =  Rs \: 8.50} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{Cost \: of \: painting \: 24 \: pillars}\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given that

  • Radius of cylinderical pillar, r = 28 cm = 0.28 m

  • Height of cylinderical pillar, h = 4 m

So,

  • Curved Surface Area of 1 cylinderical pillar is

\rm :\longmapsto\:CSA_{(cylinderical \: pillar)} = 2 \: \pi \: r \: h

\rm :\longmapsto\:CSA_{(cylinderical \: pillar)} = 2 \times \dfrac{22}{7}  \times 0.28 \times 4

\rm :\longmapsto\:CSA_{(cylinderical \: pillar)} = 7.04 \:  {m}^{2}

\bf\implies \:CSA_{(24 \: cylinderical \: pillars)} = 7.04 \times 24 = 168.96 \:  {m}^{2}

Now,

 \rm :\longmapsto\:Cost \: of \: painting \:  {1 \: m}^{2} =  Rs \: 8.50

\rm :\longmapsto\:Cost \: of \: painting \:  {168.96 \: m}^{2} =8.5 \times168.96 = Rs1436.16

Additional Information :-

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions