Math, asked by nayanaan007, 3 months ago

in a building there are 4cylinder pillars. the radius of each pillar is 35cm and height is 4m. find the total curved surface area of the pillars.​

Answers

Answered by Anonymous
2

GIVEN :-

  • There are 4 cylindrical pillars.
  • Radius of each pillar is 35cm and height is 4m.

 \\

TO FIND :-

  • Curved Surface Area(C.S.A) of all the pillars.

 \\

TO KNOW :-

 \\   \bigstar\boxed{ \sf \: C.S.A \: of \: cylinder = 2\pi \: rh} \\

Here ,

  • r is radius of Cylinder.
  • h is height of Cylinder.
  • π = 22/7

★ 100cm = 1m

★ 1000cm² = 1m²

 \\

SOLUTION :-

We have ,

  • Height = 4m = 400cm
  • Radius = 35cm

Putting values in formula ,

 \\  \sf \: C.S.A \: of \: cylinder = 2\pi \: rh \\  \\  \sf \: C.S.A \: of \: cylinder = 2 \times  \frac{22}{ \cancel7}  \times  \cancel {35} \:  \: ^{5}  \times 400 \\  \\  \sf \: C.S.A \: of \: cylinder = 2 \times 22 \times 5 \times 400 \\  \\  \sf \: C.S.A \: of \: cylinder = 88000 {cm}^{2}  \\

Area of one cylinder is 88000cm².

 \\

♦ C.S.A of 4 Cylinder = 4 × Area of One cylinder

→ C.S.A of 4 Cylinder = 4 × 88000

C.S.A of 4 Cylinder = 352000cm²

Hence , area of 4 Cylinder is 352000cm² or 352m².

 \\

MORE TO KNOW :-

★ T.S.A of Cylinder = 2πr(r+h)

★ C.S.A. of Cube = 4edge²

★ T.S.A. of Cube = 6edge²

★ C.S.A of Cuboid = 2(lh+bh)

★ T.S.A of Cuboid = 2(lh + bh + lb)

★ C.S.A of Cone = 2πrl

★ T.S.A of Cone = 2πr(r+l)

★ T.S.A of Sphere = 4πr²

★ T.S.A of Semi-circle = 3πr²

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question :-}}

  • In a building, there are 4 cylinder pillars. The radius of each pillar is 35 cm and height is 4 m. Find the total curved surface area of the pillars.

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{radius \: of \: cylindrical \: pillar \: (r) = 35 \: cm} \\ &\sf{height \: of \: pillar \: (h) = 4 \: m = 400 \: cm} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{surface \: area \: of \: 4 \: cylinders}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\blue{\underline{Formula \:  Used \::}}}}  \end{gathered}

\:\:\boxed{ \green{ \bf \:Curved \:  Surface  \: Area_{(cylinder)} =2\pi \: rh }}

Now,

It is given that

  • Radius of cylindrical pillar, r = 35 cm

  • Height of cylindrical pillar, h = 400 cm

So,

  • Total Surface area of 1 pillar = Curved Surface area

\rm :\implies\:CS A_{(cylinder)} =2\pi \: rh

\rm :\implies\:CS A_{(cylinder)} = 2 \times \dfrac{22}{7}  \times 35 \times 400

\rm :\implies\:CS A_{(cylinder)} = 88000 \:  {cm}^{2}

So,

 \tt \: Total  \: surface  \: area \:  of  \: 4  \: pillars  = 4 \times \:CS A_{(cylinder)}

 \tt \: Total  \: surface  \: area \:  of  \: 4  \: pillars  = 4 \times 88000

 \tt \: Total  \: surface  \: area \:  of  \: 4  \: pillars  = 352000 \:  {cm}^{2}

More information :-

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions