English, asked by OfficialPk, 5 months ago

In a certain assembly plant, three machines B1, B2, and B3, make 30%, 45%, and 25%, respectively, of the products. It is known from past experience that 2%, 3% and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is random selected. What is the probability that it is defective?​

Answers

Answered by ITZBFF
207

\mathsf\red{Consider \: the \: following \: events \: :}

\mathsf{A \: : \: The \: product \: is \: defective}

\mathsf{B_{1} \: : \: The \: product \: is \: made \: by \: machine \: B_{1}}

\mathsf{B_{2} \: : \: The \: product \: is \: made \: by \: machine \: B_{2}}

\mathsf{B_{3} \: : \: The \: product \: is \: made \: by \: machine \: B_{3}}

\mathsf\red{Using \: the \: theorem \: of \: total \: probability \: :}

\mathsf{P(A) \: = \: P(B_{1}).P(A|B_{1})+P(B_{2}).P(A|B_{2})+P(B_{3}).P(A|B_{3})}

\mathsf\red{But \: We \: have \: :}

\mathsf{P(B_{1}) \: = \: 0.30 , \: P(A|B_{1}) \: = \: 0.02}

\mathsf{P(B_{2}) \: = \: 0.45 , \: P(A|B_{2}) \: = \: 0.03}

\mathsf{P(B_{3}) \: = \: 0.25 , \: P(A|B_{3}) \: = \: 0.02}

\mathsf\red{Hence}

\mathsf{P(B_{1}).P(A|B_{1}) \: = \: 0.3×0.02 \: = \: 0.006}

\mathsf{P(B_{2}).P(A|B_{2}) \: = \: 0.45×0.03 \: = \: 0.0135}

\mathsf{P(B_{3}).P(A|B_{3}) \: = \: 0.25×0.02 \: = \: 0.005}

\mathsf\red{So}

\mathsf{P(A) \: = \: P(B_{1}).P(A|B_{1})+P(B_{2}).P(A|B_{2})+P(B_{3}).P(A|B_{3})}

\mathsf{P(A) \: = \: 0.006 + 0.0135 + 0.005}

\mathsf{P(A) \: = \: 0.0245}

\mathsf{}

\large{\sf{\fcolorbox{black}{pink}{\copyright \: \: \: ITZBFF}}}

Answered by sreekarreddy91
11

\mathsf\red{Consider \: the \: following \: events \: :}

\mathsf{A \: : \: The \: product \: is \: defective}

\mathsf{B_{1} \: : \: The \: product \: is \: made \: by \: machine \: B_{1}}</p><p>

</p><p>\mathsf{B_{2} \: : \: The \: product \: is \: made \: by \: machine \: B_{2}}

\mathsf{B_{3} \: : \: The \: product \: is \: made \: by \: machine \: B_{3}}</p><p>

\mathsf\red{Using \: the \: theorem \: of \: total \: probability \: :}

\mathsf{P(A) \: = \: P(B_{1}).P(A|B_{1})+P(B_{2}).P(A|B_{2})+P(B_{3}).P(A|B_{3})}

\mathsf\red{But \: We \: have \: :}

\mathsf{P(B_{1}) \: = \: 0.30 , \: P(A|B_{1}) \: = \: 0.02}

\mathsf{P(B_{2}) \: = \: 0.45 , \: P(A|B_{2}) \: = \: 0.03}

\mathsf{P(B_{3}) \: = \: 0.25 , \: P(A|B_{3}) \: = \: 0.02}

\mathsf\red{Hence}

\mathsf{P(B_{1}).P(A|B_{1}) \: = \: 0.3×0.02 \: = \: 0.006}

\mathsf{P(B_{2}).P(A|B_{2}) \: = \: 0.45×0.03 \: = \: 0.0135}

\mathsf{P(B_{3}).P(A|B_{3}) \: = \: 0.25×0.02 \: = \: 0.005}

\mathsf\red{So}

\mathsf{P(A) \: = \: P(B_{1}).P(A|B_{1})+P(B_{2}).P(A|B_{2})+P(B_{3}).P(A|B_{3})}

\mathsf{P(A) \: = \: 0.006 + 0.0135 + 0.005}

\mathsf{P(A) \: = \: 0.0245}

\mathsf\red{\therefore \: 0.0245 \: is \: the \: probability \: of \: defective}

Similar questions