Math, asked by Anonymous, 13 hours ago

In a certain positive fraction , the denominator is greater than the numerator by 3. If 1 is subtracted from the numerator and the denominator both, the fraction reduces by 1/14. Find the fraction.​

Answers

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
94

Information provided with us:

  • The denominator is greater than the numerator by 3.
  • 1 is subtracted from the numerator
  • 1 is also subtracted from the denominator
  • Fraction is reduced by 1/14

What we have to calculate:

  • We have to calculate and find out the fraction

How to solve these type of questions:

  • These type of questions are of linear equations. First of all we have to assume a number be any variable eg, x or y. Then set-up an equation in terms of information given and solve it.

Performing Calculations:

Assuming that the positive fraction as,

  •  \red{\boxed{ \sf{ \dfrac{y}{y + 3} }}}

Here we have added 3 in denominator because in the question it is given denominator is greater than numerator by 3.

Subtracting 1 from numerator,

: \longmapsto \: \sf{ \dfrac{y - 1}{y + 3} }

Subtracting 1 from denominator,

: \longmapsto \: \sf{ \dfrac{y - 1}{y + 3 - 1} }

 : \longmapsto \: \sf{ \dfrac{y - 1}{y  + 2} }

We know certain positive fraction is,

\boxed{\sf{ \dfrac{y }{y  + 3} }}

Fraction is reduced by 1/14,

:  \longmapsto \: \sf{ \dfrac{y }{y  + 3}  -  \dfrac{1}{14}  }

Keeping it equal to when 1 was subtracted from both denominator and numerator,

:  \longmapsto \: \sf{ \dfrac{y }{y  + 3}  -  \dfrac{1}{14}   =  \dfrac{y - 1}{y + 2} }

Taking L.C.M.,

:  \longmapsto \: \sf{ \dfrac{14(y) }{y  + 3}  -  \dfrac{1(y + 3)}{14}   =  \dfrac{y - 1}{y + 2}}

Cross multiplying,

:  \longmapsto \: \sf{ \dfrac{14 \times y}{y  + 3}  -  \dfrac{1 \times (y + 3)}{14}   =  \dfrac{y - 1}{y + 2}}

:  \longmapsto \: \sf{ \dfrac{14 \times y - 1 \times (y + 3)}{14 \times (y  + 3)}} =  \dfrac{y - 1}{y + 2}

:  \longmapsto \: \sf{ \dfrac{14y - 1 \times (y + 3)}{14 \times (y  + 3)}} =  \dfrac{y - 1}{y + 2}

:  \longmapsto \: \sf{ \dfrac{14y - 1y  - 3}{14 \times (y  + 3)}} =  \dfrac{y - 1}{y + 2}

:  \longmapsto \: \sf{ \dfrac{13y  - 3}{14 \times (y  + 3)}} =  \dfrac{y - 1}{y + 2}

Changing the sides,

:  \longmapsto \: \sf{ }(13y - 3)(y + 2) = 14(y - 1)(y + 3)

:  \longmapsto \: \sf{ }(13y - 3) \times (y + 2) = 14(y - 1) \times (y + 3)

:  \longmapsto \: \sf{ 13y  (y + 2)  - 3(y + 2)= 14(y {}^{2}  - y + 3y - 3)}

:  \longmapsto \: \sf{ 13y {}^{2}  + 26y - 3y - 6= 14(y {}^{2}  - y + 3y - 3)}

:  \longmapsto \: \sf{ 13y {}^{2}  + 23y - 6= 14(y {}^{2}  - y + 3y - 3)}

:  \longmapsto \: \sf{ 13y {}^{2}  + 23y - 6= 14(y {}^{2}   + 2y - 3)}

:  \longmapsto \: \sf{ 13y {}^{2}  + 23y - 6= 14 \times (y {}^{2}   + 2y - 3)}

:  \longmapsto \: \sf{ 13y {}^{2}  + 23y - 6= 14y {}^{2}   + 28y - 42}

Transposing the sides,

:  \longmapsto \: \sf{  23y - 28y = 14y {}^{2} - 13y {}^{2}  - 42 + 6}

:  \longmapsto \: \sf{  - 5y = y {}^{2}   - 36}

Now,

:  \longmapsto \: \sf{  y {}^{2}   + 5y  - 36 = 0}

Forming factors,

:  \longmapsto \: \sf{  y {}^{2}   + 5y - 4y  - 36 = 0}

Grouping them,

:  \longmapsto \: \sf{  y ( y + 9) - 4(y + 9) = 0}

:  \longmapsto \: \sf{ ( y + 9) (y - 4) = 0}

Comparing them,

:  \implies \: \bf{y - 4 = 0}

:  \implies \: \large{\boxed{\bf{y = 4}}}

Finding out the fraction,

:  \longmapsto \: \tt{ \dfrac{y}{y+3}}

  • Putting the value of x as 4,

:  \longmapsto \: \tt{Fraction \: = \: \dfrac{4}{4+3}}

:  \longmapsto \: \purple{\boxed{\bf{Fraction \: = \: \dfrac{4}{7}}}}

Answered by XxitzZBrainlyStarxX
36

Question:-

In a certain positive fraction , the denominator is greater than the numerator by 3. If 1 is subtracted from the numerator and the denominator both, the fraction reduces by 1/14. Find the fraction.

Given:-

Denominator of the fraction is greater than numerator by

To Find:-

  • Fraction.

Solution:-

  • Let the Numerator be x. and
  • Denominator = x + 3.

\sf \: Fraction  =  \frac{x}{x + 3}

According to question,

\sf \frac{x - 1}{(x + 3) - 1 }  =  \frac{x}{x + 3}   -   \frac{1}{14}

 \sf \longrightarrow  \frac{x - 1}{x  + 2}  =  \frac{x}{x+3}   -   \frac{1}{14}

 \sf\longrightarrow  \frac{x}{x + 3} -  \frac{x - 1}{x + 2}   =  \frac{1}{14}

 \sf \longrightarrow \frac{x(x + 2) - (x - 1)(x + 3)}{(x  + 3)(x + 2)}  =  \frac{1}{14}

 \sf \longrightarrow \frac{x {}^{2}  + 2x - (x {}^{2} + 3x - x - 3) }{(x + 3)(x + 2)}  =   \frac{1}{14}

\sf \longrightarrow \frac{{{ \cancel{x {}^{2}}}}  +{{ \cancel{ 2x}}} - {{ \cancel{ x {}^{2} }}}- {{ \cancel{2x }}}+ 3 }{(x + 3)(x + 2)}  =  \frac{1}{14}

➟ 42 = (x + 3) (x + 2)

➟ 42 = x² + 2x + 3x + 6

➟ x² + 5x – 36 = 0

➟ x² + 9x – 4x – 36 = 0

➟ x (x + 9) – 4 (x + 9) = 0

➟ (x + 9) (x – 4) = 0

x = 9, 4

  • Numerator = x = – 9, 4.
  • Denominator = x + 3 = – 6, 7.

♤ Positive fraction = Both Numerator and denominator are natural number.

 \sf \: Fraction =  \frac{4}{7}

Answer:-

 \sf \red{Hence, Fraction =  \frac{4}{7}  }

Hope you have satisfied.

Similar questions